Symbiotic Apps-Wireless Architecture Via Named Data

Yuanjie Li Computer Science Department, UCLA 6/30/17 <u>http://ice-ar.named-data.net/</u>

B5G Challenges for Wireless Edge

To enable B5G networking & applications:

- Low latency, high throughput, support for heterogeneous wireless technologies
- Seamless integration of computing, innetwork storage, & communication @ edge
- Resilient networking
 - works in either normal or disruptive environments

Limitation of State-of-the-Art

- The innovations of apps and wireless are moving apart from each other
 Separated by TCP/IP protocol stack
- Application: Unaware of underlying wireless dynamics and multiple interfaces
- **Wireless**: Unaware of application-level demands and communication patterns

Prior Work: Mobile-Empowered AR/VR in 4G Wireless

Prior Work: Mobile-Empowered AR/VR in 4G Wireless

What we have learnt

- 1. TCP/IP stack prohibits information sharing between app and wireless
 - Their low-latency potentials are not fulfilled
- 2. Wireless bandwidth is a bottleneck, but not the only one
 - Yet app may be unaware when bandwidth suffices
- 3. Protocol signaling overhead is an equally important latency bottleneck¹
 - Maintain wireless connectivity
 - Support consumer mobility

Prior Work: Mobile-Empowered AR/VR in 4G Wireless

88.28-962.2ms per connectivity setup/migrationComparable to wireless link latency

"A Control-Plane Perspective on Reducing Data Access Latency in LTE Networks", ACM MobiCom'17 $^{\circ}$

How ICE-AR Bridges the Gap between App & Wireless in B5G

Desirable Features by NDN

- 1. Fetching data by application names
- 2. Stateful forwarding plane with closed feedback loop
- 3. Built-in support for
 - Rich patterns: one-one, one-many, many-one
 - Integrating heterogonous wireless interfaces
 - Seamless consumer mobility

Integrating Computation, Storage & Wireless Networking

- Networking: Fetch data from wherever possible
- Processing: Dynamic reconfigurable acceleration
- Storage: Opportunistically caching at any node

ICE-AR Communication Plane

- A right architecture enables full exploitation of new technologies
- Network architecture is to bridge the gap between what app wants and what wireless technology can provide

ICE-AR Information Plane

- NDN as the architecture foundation
- New "Thin waist"
 - Bridging AR application and communication plane
- Co-design with the wireless communication plane

Co-Design App & Wireless @ Edge

- Close the gap: Minimal Layering via Naming
 NDN directly over wireless
 - Reduce layered processing latency
 - Facilitate info sharing between wireless and app

Co-Design App & Wireless @ Edge

- Wireless-Aware App: Adaptive contents
 - En-route data processing through naming
 - Balance the workload between computing and networking
 - Adaptive forwarding strategy
 - With dynamic wireless info: bandwidth, delay, loss ratio...
 - From hetergeneous interfaces: WiFi, bluetooth, LTE, ...

Co-Design App & Wireless @ Edge

- App-aware Wireless: Cross-layer Optimization
 - On-demand virtual wireless link access: Aggregation or inverse multiplexing
 - Wireless MAC tailored to diverse communication patterns (one-one, one-many, many-one, ...)
 - Avoid signaling overhead w/ built-in mobility support

Achieving Resilient Connectivity

- In-network storage and caching shields disruption to connectivity
 - Popular "content" makes itself most available
- Realizing multipath data delivery in B5G
 Multiple wireless technologies cover each other for resiliency
- Support for mobility
 - Built-in support for mobile consumers
 - Enhancing NDN with intrinsic support for mobile producers

Summary: Three Takeaways

Named data glues apps and wireless

 Co-design of NDN & Wireless to make ICN work in reality at wireless edge

 AR as the driving application scenario to push B5G networking research forward

The End