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Center for Customizable Domain-Specific Computing
— Focus on Energy Efficient Computing [2009 cDSC Proposal]
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NSF Expeditions in Computing (2009) & InTrans Award with Intel (2014)
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Why It Matters to This Project

+ “5G is where computation and communication converge”
= Geng Wu, Intel Fellow

¢ There is a great need for acceleration in the edge

+ Proposed research — Acceleration-as-a-Service in NDN

UCLA CDSC



What We have Learned So Far
-- Levels of Customization

¢ Single-chip level

* Require new processor designs, e.g. using composable
accelerators [ISLPED’ 12, DAC’14]

¢ Server node level
= Host CPU + FPGA via PCI-e or QPI connections

¢ Data center level

= Clusters of heterogeneous computing nodes
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Levels of Customization

¢ Single-chip level

= Require new processor designs, e.g. using fixed-function or
composable accelerators

¢ Server node level
= Host CPU + FPGA via PCI-e or QPI connections

¢ Data center level

= Clusters of heterogeneous computing nodes



Use of FPGAs for Accelerator Implementation
Field Programmable Gate EE N BN e
Arrays (FPGA)

= Reconfigurable hardware to ﬂ M M H

accelerate specific
computations

= Mature compute platforms n M M ﬂ
integrated with CPU
-0 -5

= Low-power, energy efficient

(5~30W)
= Customized high performance H M M H

* Smith-waterman [FCCM’15]:
Kl Kl Kl KEa

26x over 24-thread CPU
* CT Recon [FPGA’14]: 4x over , _

GPU Source: |. Kuon, R. Tessier, J. Rose. FPGA Architecture:
Survey and Challenges. 2008.




Modern CPU-FPGA Platforms

Alpha Data, 2014 CAPI, 2015
PCle-based, Separate Memory (Mainstream) PCle-based, Shared Memory
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Example: Acceleration of Lossless Data
Compression on HARP-2

¢ Scalable FPGA-based parallel architecture
= Multi-engine Deflate compressor which can be easily scaled
= Fully pipelined in each engine
= Valuable in multi-thread environment applications

Processor

éE QPI+PCle

FIU (FPGA Interface Unit)

Integration on
HARPv2

CCI-P

Read

llszgpu::;e A F U

Request
| IResponse

Reorder .
-:| sufer [1 Deflate engine

FIFO |

i Reorder
Buffer

H Deflate engine

FIFo [+

Write

Reorder - |
| Buffer || Deflate engine H FIFO
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Acceleration of Lossless Data Compression

¢ Throughput
= Kernel throughput: 9.6 GB/s @ 200 MHz
= End-to-End throughput: >9 GB/s
= Best published result

~ 28x speedup !!!

igzip(Fastest)
0.338 GB/s

CPU FPGA

¢ Compression ratio
= Average 1.95x on Calgary Corpus benchmarks

Kernel Throughput

9.6 GB/s

End-to-End Throughput
on HARP

3.9 GB/s

End-to-End Throughput
on HARPv2

9.3 GB/s
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Levels of Customization

+Single-chip level

= Require new processor designs, e.g. using fixed-function or
composable accelerators

¢Server node level
= Host CPU + FPGA via PCl-e or QPI connections

¢Data center level
= Clusters of heterogeneous computing nodes

12



Data-Center Level Customization:
Example: CDSC FPGA-Accelerated Cluster

® A 24-node cluster with FPGA-based accelerators

Scale-out: an in-memory cluster

N

Scale-up: FPGA
acceleration
inside each node

Alpha Data board:
1. Virtex 7 FPGA

1 master / 2. 16GB on-board
driver RAM
1 10GbE Each node:
switch 1. Two Xeon processors
- 2. One FPGA PCle card
(Alpha Data)
3. 64 GB RAM
4. 10GBE NIC

Spark:

22 workers = * Computation framework

HDFS:
* Distributed storage
framework

1 file server

* In-memory MapReduce system
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Overall Performance with Accelerators
(Integrated with Blaze)

Logi'stic Regression
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FPGA-Based Customized Computing is Taking Off

+ FPGA is gaining popularity as a compute device
= Used by many industry giants
= First public cloud adoption (AWS F1) in Feb. 2017
= |ntel prediction: 30% datacenter nodes with FPGA by 2020

mll \icrosoft ZA! ars Dn)_/ \.

blng Bl Azure now part of Intel
(T
020 IBM Cloudant®
Bai &S amazon
web services

6/30/17 Di Wu's PhD Defense 15



6/30/17

HOW TO DESIGN AND DEPLOY
ACCELERATORS

UCLA VLSICAD LAB 16
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C/C++ Based Synthesis for Accelerator Design
xPilot (UCLA 2006) -> AutoPilot (AutoESL) -> Vivado HLS (Xilinx 2011-)

Design Specification

/ A C/C++/SystemC
- 38 o J User c/onstramtsJ + Platform-based C to RTL
N el .
S N— synthesis
3 [ Compilation & ] AutoPilot™  Synthesize pure ANSI-C and
Z Elaboration C++, GCC-compatible
& , E compilation flow
§ [ Code transformation & opt] 0 + Full support of IEEE-754 floating
S § point data types & operations
, - ~ 2 . "
Behavioral & Communication % Platform ¢ Efficiently handle bit-accurate

fixed-point arithmetic

A u )<
LIt
i

>

haracterization
Library

\Synthesis and Optimizations) )

+ SDC-based scheduling

+ Automatic memory partitioning

RTL SystemC Constraints
\/) QoR matches or exceeds manual
RTL for many designs

FPGA
or ASIC blocks

BuidAj0j0.1d pue ‘uoijedljLIaA ‘uolje|nwis

—RTCHDLS & J |Tim|r‘o'giPoworiLayou1

[

Developed by AutoESL, acquired by Xilinx in Jan. 2011
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CMOST: Fully Automated Compilation and Mapping Flow
[DAC 2015]

Application: C/C++/OpenMP4.0 User Directives Platform Spec.
/ l l System Optimizatm\
/ \Task graph /- r )
f ) Module evaluation Data reuse
" Task graph extraction >
'3 / Block streaming Prefetching <
> |( _'_ | hardware _ =
g HW/SW partitioning ) v Module select!on & duplication J)
: design parameters
S Driver generation
S\ \ J
;2. OpenCL generation VoA tarilkes Configure C/RTL/scripts
J System IP templat
1 Y R Xilink Vivado HLS | 4
Test generation OpenCL ’ m—
\& / Xilinx Vivado /
v v v
design analysis/impl. report On-board Retargetable and optimized

executable HW/SW OpenCL source code



Further Advance in Programming FPGAs in High-
Level Languages

C/C++ with pragmas

Merlin Compiler from Falcon Computing @

Solutions: http:/iwww.falcon-computing.com

_ Source-to-source
v C-based design flow

Optimizations
~ OpenMP-like high-level < -
programming model OpenCL Generation
v Automatic optimizations for
productivity and QoR @Optimmd Openth

v Same input for multi-vendors

OpenCL backend
(Altera/Xilinx)

and multi-platforms

System executables

©Copyright 2016 Falcon Computing Solutions
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FPGA platform: Intel Arria 10 DevKit
Software configuration: AOCL 16.1

Merlin 2017.2 Preliminary Results

(manual OpenCL conversion)

Baseline

Merlin
(Merlin Compiler)
Case Baseline (quick Opt) Merlin Manual Opt OCL

aes 7600 2.4 1
gemm 0.2 0.2 0.2
viterbi 14.5 0.16 0.2
NW 180 53 3.9
bfs-queue 9.7 0.4 NA
kmp 6700 920 111
spmv-el 10 1.5 1.5

Intel FPGA
OpenCL
SDK

Execution time: ms

Merlin speedup over Baseline: 32.6x (1x — 3167x), excluding ‘aes’ and ‘gemm’

FALCON CONFIDENTIAL
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What about Accelerator Deployment?

4

\\‘\\ i

‘ How to program with
a\ | / your accelerators...?

Application developer

How to acquire %

accelerator resource ...?

Accelerator designer

How to install my
accelerators...?

Cloud or edge
service provider
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Challenges in the Accelerator Deployment

Complex programming

* High-level language (C/C++/Java) for applications (Spark, AR) vs.
low-level language (OpenCL) & HW expertise for accelerators (FPGA)
= Explicit accelerator sharing by multiple threads and applications

» [HotCloud'16] Manual integration of Spark + FPGA: ~900 lines of code
with HW expertise, and has to repeat for every integration

Runtime performance overhead

= #1: Large JVM/host-to-accelerator data transfer overhead,
[HotCloud'16] 1000x slowdown for straightforward integration

= #2: Long FPGA (partial) reconfiguration overhead (0.5 - 2 seconds),
Naive FPGA sharing by multi-accelerators may lead to 2x slowdown
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Blaze: Accelerator-as-a-Service [SoCC 2016]

\\‘\\” i 7=

- -—---+ Accelerator status

GAM

NAM

Global Accelerator Manager
Accelerator locality aware scheduling

Node Accelerator Manager
Local accelerator service management,

JVM-to-ACC communication optimization

(

Container )

ﬁ ( Container )

RM: Resource Manager
NM: Node Manager

AM: Application Master
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Blaze Deployment Flow Overview

Register Accelerators

= |nterface to add
accelerator service to
corresponding nodes

Request Accelerators Input data

= Use acc_id as label ~ Outputdata . @ et Info 1' ACC Tnfo

User Application

ACC Labels 1' Containers

= GAM allocates
. FPGA
corresponding nodes Node ACC
to applications Manager GPU
ACC
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New Research Theme -- Acceleration in Fog

+Single-chip level

= Require new processor designs, e.g. using fixed-function or
composable accelerators

¢Server node level
= Host CPU + FPGA via PCl-e or QPI connections

+Data center level
= Clusters of heterogeneous computing nodes
¢ Fog-level

= Acceleration at the edge of wireless network
= Acceleration as a service (AaaS)
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Recap: The Need for In-network Acceleration

> In-network and en-route aggregation
o loT sfreams are processed once generated
o Deploy and customize NFs for loT processing

» Location-based aggregation
o Location as the first landmark for streamlining

o On-demand migration btw compute & comm.

Processed

ORI1A
Raw DATA

«— D
« OED

Raw DATA

SWon CPU

a'x

HW on FPGA

Local Processing

Edge Acceleration-

Dynamic scheduling
/ as-a-Service (AaaS)

and migration
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Research Opportunities of AaaS in NDN

- NDN for acceleration

e  Acceleration function F(x)
 F =bhitstream is data: NDN helps
« xis data: NDN helps to minimize the redundant computation

- Acceleration for NDN
* Name checking - hashing
Compression/decompression
*  Encryption/decryption

- Enable new 5G applications: e.g. ARIVR
« CPU is not sufficient to meet latency requirment
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