
1

Edge Acceleration-as-a-Service

Jason Cong
Distinguished Chancellor’s Professor, UCLA

Director, Center for Domain-Specific Computing

cong@cs.ucla.edu
http://cadlab.cs.ucla.edu/~cong

2

Center for Customizable Domain-Specific Computing
– Focus on Energy Efficient Computing [2009 CDSC Proposal]

Parallelization

Source: Shekhar Borkar, Intel

Customization

Adapt the architecture to

Application domain

NSF Expeditions in Computing (2009) & InTrans Award with Intel (2014)

Why It Matters to This Project

◆ “5G is where computation and communication converge”
§ Geng Wu, Intel Fellow

◆ There is a great need for acceleration in the edge

◆ Proposed research – Acceleration-as-a-Service in NDN

UCLA CDSC

What We have Learned So Far
-- Levels of Customization

◆Single-chip level
§ Require new processor designs, e.g. using composable

accelerators [ISLPED’ 12, DAC’14]

◆Server node level
§ Host CPU + FPGA via PCI-e or QPI connections

◆Data center level
§ Clusters of heterogeneous computing nodes

6

Adaptive L1 Cache
+ SPM/Buffer

[ISLPED 11]

Hybrid L2 Cache with
STTRAM + SRAM
[DATE 12]

Buffer in NUCA
[ISLPED 12]

D
IM

M

D
IM

M

D
IM

M

D
IM

M

A
IM

A
IM

A
IM

A
IM

RF-interconnects improves DRAM BW

RF-interconnects
[HPCA 08 best paper]
Hybrid NoC [DAC 15]

D
IM

M

D
IM

M

D
IM

M

D
IM

M

Accelerator in
Memory

Chip-Level Customization:
Accelerator-Rich Architectures (ARA)

ARC, CHARM, CAMEL
[DAC 12, ISLPED 12, DAC 14]

[JESTCS 12]Now the full-system ARA simulator
PARADE [ICCAD 15] is open source

Accel

TLB

Shared TLB

Accel

TLB

Accel

TLB

Accel

TLB

Address Translation
[HPCA 17]

7

Levels of Customization

◆Single-chip level
§ Require new processor designs, e.g. using fixed-function or

composable accelerators

◆Server node level
§ Host CPU + FPGA via PCI-e or QPI connections

◆Data center level
§ Clusters of heterogeneous computing nodes

8

Use of FPGAs for Accelerator Implementation

Field Programmable Gate
Arrays (FPGA)
§ Reconfigurable hardware to

accelerate specific
computations

§ Mature compute platforms
integrated with CPU

FPGA benefits
§ Low-power, energy efficient

(5~30W)
§ Customized high performance

• Smith-waterman [FCCM’15]:
26x over 24-thread CPU

• CT Recon [FPGA’14]: 4x over
GPU Source:		I.	Kuon,	R.	Tessier,	J.	Rose.	FPGA	Architecture:	

Survey	and	Challenges.	2008.

Modern CPU-FPGA Platforms

Intel®
Xeon®
Processor Intel®

Memory
Controller
Hub (MCH)

Intel® I/O
Subsystem Memory Memory

Application
Engine Hub
(AEH)

Application Engines
(AEs)

Direct
Data
Port

“Commodity” Intel Server Convey FPGA-based coprocessor

Standard Intel® x86-64
Server
x86-64 Linux

Convey coprocessor
FPGA-based
Shared cache-coherent memory

White Paper

Advance Coherent Accelerator Processor Interface (CAPI) for POWER8 Systems

29 September 2014 Page 6

Figure 1: CAPI Hardware Ecosystem

Equally important is the translation function that the CAPP and PSL provide for the accelerator. The
accelerator uses the same virtual memory addressing space as the core application that enables it. The
CAPP and PSL handle all virtual-to-physical memory translations, simplifying the programming model and
freeing the accelerator to do the number crunching directly on the data it receives.

In addition, the PSL contains a 256 KB resident cache on behalf of the accelerator. Based on the needs
of the algorithm, the accelerator can direct the use of the cache via the type of memory accesses
(reads/write) as cacheable or noncacheable. Fundamentally, the rich set of commands that the
accelerator can send to the PSL reflects all of the types of memory accesses available to the POWER8
cores themselves (such as reads, reads with intent-to-modify, reservations, locks, writes, and writes to
highest point of coherency).

The accelerator runs hand-in-hand with an application running on the core as shown in Figure 2:
Dedicated Process Model.

10

Example: Acceleration of Lossless Data
Compression on HARP-2
♦ Scalable FPGA-based parallel architecture
▪ Multi-engine Deflate compressor which can be easily scaled
▪ Fully pipelined in each engine
▪ Valuable in multi-thread environment applications

Integration on
HARPv2

11

Acceleration of Lossless Data Compression
♦ Throughput
▪ Kernel throughput: 9.6 GB/s @ 200 MHz
▪ End-to-End throughput: >9 GB/s
▪ Best published result

♦ Compression ratio
▪ Average 1.95x on Calgary Corpus benchmarks

igzip(Fastest)
0.338 GB/s

Deflate
9.6 GB/s

~ 28x speedup !!!

CPU FPGA

Kernel Throughput

End-to-End Throughput
on HARP

End-to-End Throughput
on HARPv2

9.6 GB/s

3.9 GB/s

9.3 GB/s

12

Levels of Customization

♦Single-chip level
▪ Require new processor designs, e.g. using fixed-function or

composable accelerators

♦Server node level
▪ Host CPU + FPGA via PCI-e or QPI connections

♦Data center level
▪ Clusters of heterogeneous computing nodes

13

§ A 24-node cluster with FPGA-based accelerators

Data-Center Level Customization:
Example: CDSC FPGA-Accelerated Cluster

22 workers

1 master /
driver

Each node:
1. Two Xeon processors
2. One FPGA PCIe card

(Alpha Data)
3. 64 GB RAM
4. 10GBE NIC

Alpha Data board:
1. Virtex 7 FPGA
2. 16GB on-board

RAM

Spark:
• Computation framework
• In-memory MapReduce system

HDFS:
• Distributed storage

framework1 file server

1 10GbE
switch

Scale-out: an in-memory cluster

Scale-up: FPGA
acceleration
inside each node

14

Overall Performance with Accelerators
(Integrated with Blaze)

0

50

100

150

200

4Nx12T
CPU

8Nx12T
CPU

12Nx12T
CPU

4Nx12T
FPGA

Ti
m

e
(s

ec
)

Task time App time

0

30

60

90

120

150

4Nx12T
CPU

8Nx12T
CPU

12Nx12T
CPU

4Nx12T
FPGA

Ti
m

e
(s

ec
)

Task time App time

0

50

100

150

200

4Nx12T
CPU

4Nx12T
FPGA

Ti
m
e	
(s
ec
)

shuffle

compute

scheduler

data	load	and	
preprocessing

0

30

60

90

120

150

4Nx12T
CPU

4Nx12T
FPGA

Ti
m
e	
(s
ec
)

shuffle

compute

scheduler

data	load	and	
preprocessing

Logistic	Regression

Kmeans

1 server	with	FPGA	offers	the	same	throughput	of	3 servers

FPGA-Based Customized Computing is Taking Off

6/30/17 Di Wu's PhD Defense 15

◆ FPGA is gaining popularity as a compute device
§ Used by many industry giants

§ First public cloud adoption (AWS F1) in Feb. 2017

§ Intel prediction: 30% datacenter nodes with FPGA by 2020

16

HOW TO DESIGN AND DEPLOY
ACCELERATORS

6/30/17 UCLA VLSICAD LAB 16

17

C/C++ Based Synthesis for Accelerator Design
xPilot (UCLA 2006) -> AutoPilot (AutoESL) -> Vivado HLS (Xilinx 2011-)

◆ Platform-based C to RTL
synthesis

◆ Synthesize pure ANSI-C and
C++, GCC-compatible
compilation flow

◆ Full support of IEEE-754 floating
point data types & operations

◆ Efficiently handle bit-accurate
fixed-point arithmetic

◆ SDC-based scheduling
◆ Automatic memory partitioning
◆ …
QoR matches or exceeds manual
RTL for many designs

C/C++/SystemC

Timing/Power/Layout
Constraints

RTL HDLs &
RTL SystemC

Platform
Characterization

Library

FPGA
or ASIC blocks

=

Sim
ulation, Verification, and Prototyping

Compilation &
Elaboration

Code transformation & opt

Behavioral & Communication
Synthesis and Optimizations

AutoPilotTM

C
om

m
on Testbench

User Constraints

ESL Synthesis

Design Specification

Developed by AutoESL, acquired by Xilinx in Jan. 2011

Retargetable and	optimized
OpenCL	source	code

CMOST: Fully Automated Compilation and Mapping Flow
[DAC 2015]

Application:	C/C++/OpenMP4.0 User	Directives

Task	graph

hardware	
model

design	analysis/impl.	report

design	parameters

OpenCL

Platform	Spec.

Pr
og

ra
m
	A
na

ly
sis

System	Optimization

System	Generation

Module templates,
System IP templates

(C/RTL)

On-board	
executable	HW/SW

19

Source-to-source
Optimizations

Compiler

OpenCL Generation

OpenCL backend
(Altera/Xilinx)

C/C++ with pragmas

Optimized OpenCL

Merlin Compiler from Falcon Computing
Solutions: http://www.falcon-computing.com

ü C-based design flow

ü OpenMP-like high-level
programming model

ü Automatic optimizations for
productivity and QoR

ü Same input for multi-vendors
and multi-platforms

©Copyright 2016 Falcon Computing Solutions

System executables

Further Advance in Programming FPGAs in High-
Level Languages

Merlin 2017.2 Preliminary Results

FALCON CONFIDENTIAL 20

Execution time: ms

Merlin speedup over Baseline: 32.6x (1x – 3167x), excluding ‘aes’ and ‘gemm’

FPGA platform: Intel Arria 10 DevKit
Software configuration: AOCL 16.1 C/C++

Merlin
(Merlin Compiler)

Intel FPGA
OpenCL

SDK

Baseline
(manual OpenCL conversion)

Case Baseline	(quick	Opt) Merlin Manual	Opt OCL

aes 7600 2.4 1

gemm 0.2 0.2 0.2

viterbi 14.5 0.16 0.2

NW 180 5.3 3.9

bfs-queue 9.7 0.4 NA

kmp 6700 920 111

spmv-el 10 1.5 1.5

21

What about Accelerator Deployment?

Accelerator designer

Cloud or edge
service provider

Application developer

How to install my
accelerators…?How to acquire

accelerator resource …?

How to program with
your accelerators…?

22

Complex programming
§ High-level language (C/C++/Java) for applications (Spark, AR) vs.

low-level language (OpenCL) & HW expertise for accelerators (FPGA)
§ Explicit accelerator sharing by multiple threads and applications
§ [HotCloud'16] Manual integration of Spark + FPGA: ~900 lines of code

with HW expertise, and has to repeat for every integration

Runtime performance overhead
§ #1: Large JVM/host-to-accelerator data transfer overhead,

[HotCloud'16] 1000x slowdown for straightforward integration
§ #2: Long FPGA (partial) reconfiguration overhead (0.5 - 2 seconds),

Naïve FPGA sharing by multi-accelerators may lead to 2x slowdown

Challenges in the Accelerator Deployment

23

Blaze: Accelerator-as-a-Service [SoCC 2016]

Client RM
AM

NM

NM
Container
Container

Accelerator	status

GAM
NAM

NAM

FPGA GPU

Global Accelerator Manager
Accelerator locality aware scheduling

Node Accelerator Manager
Local accelerator service management,
JVM-to-ACC communication optimization

GAM

NAM

RM: Resource Manager
NM: Node Manager
AM: Application Master

24

Blaze Deployment Flow Overview

User Application

Global ACC Manager

Node ACC
Manager

FPGA

GPU
ACC

ACC Labels Containers

Container Info ACC Info

ACC Invoke
Input data
Output data

Register Accelerators
§ Interface to add

accelerator service to
corresponding nodes

Request Accelerators
§ Use acc_id as label
§ GAM allocates

corresponding nodes
to applications

25

New Research Theme -- Acceleration in Fog

♦Single-chip level
▪ Require new processor designs, e.g. using fixed-function or

composable accelerators

♦Server node level
▪ Host CPU + FPGA via PCI-e or QPI connections

♦Data center level
▪ Clusters of heterogeneous computing nodes

♦Fog-level
▪ Acceleration at the edge of wireless network
▪ Acceleration as a service (AaaS)

26

Recap: The Need for In-network Acceleration

♢ In-network and en-route aggregation
¡ IoT streams are processed once generated
¡ Deploy and customize NFs for IoT processing

♢ Location-based aggregation
¡ Location as the first landmark for streamlining

♢ On-demand migration btw compute & comm.

Edge Acceleration-
as-a-Service (AaaS)

27

Research Opportunities of AaaS in NDN
• NDN for acceleration

• Acceleration function F(x)
• F = bitstream is data: NDN helps
• x is data: NDN helps to minimize the redundant computation

• Acceleration for NDN
• Name checking – hashing
• Compression/decompression
• Encryption/decryption

• Enable new 5G applications: e.g. AR/VR
• CPU is not sufficient to meet latency requirment

