
Security Progress in ICE-AR

ICN-WEN ANNUAL MEETING

JUNE 20 2018

Outline
♢ Introduction
♢ Schematized Trust Progress
♢ Access Control in the Context/Deep Context

Parlance
♢ Some other contributions
♢ Next Year

Outline
♢ Introduction
♢ Schematized Trust Progress
♢ Access Control in the Context/Deep Context

Parlance
♢ Some other contributions
♢ Next Year

Introduction

♢ Scope of ICN-WEN
¡ Creating a trust framework for use by the diversity

of users in the campus setting
▷ Trusted, Semitrusted, Untrusted (Guest)

¡ Exploring mechanisms for access control for the
AR/VR case
▷ How to share content between MD and EN?

◎ Context and Deep Context
▷ Efficiently leverage NDN’s trust and access control.

¡ Explore security enhancements and test their
impact.

Outline
♢ Introduction
♢ Schematized Trust Progress
♢ Access Control in the Context/Deep Context

Parlance
♢ Some other contributions
♢ Next Year

Users and Trust in the Campus Scenario.

Trusted
Faculty, Staff,
Administrators

Semi-trusted
Students
Academic Visitors

Guest
Parents,
Game Audience

NDNCERT

NDN-RTC

Schematized Trust

NAC
Which
Keys Can
and
Can’t
Operate
on Data

How to use schematized trust?

Trust Anchors (TAs)
Well-known; trusted; end
nodes have TAs’
certificate for validation

End Nodes
Mobile Device (MD),
Edge Node (EN) …

Obtain their identity from
a TA by extension
(Namespace identification and
access)

/ucla/ca

/ucla/cs/ca /ucla/remap/ca

/ucla/cs/EN1
/ucla/remap/EN1

/ucla/cs/users/MD3 /ucla/remap/guest/MD2

A trust schema set up for our application

Schematizing trust

two fronts will merge to create the complete security solution.

Here, we define the terminology that we will use in ICE-AR application before diving into details of its
security mechanisms. Figure ?? illustrates the architecture overview of ICE-AR application. In addition to
the existing entities, which have been discussed in previous sections, we introduce the Domain Owner and
Content Publisher. The domain owner is an entity that is responsible for trust management, access control
management, and key distribution. A content publisher can be any content producer outside the ICE-AR
application environment (e.g., Google, YouTube, and CNN).

In ICE-AR application, the end-devices (MTs) and edge nodes act as both the producer and consumer.
As it is shown in Figure ??, we use Context and Deep Context to di↵erentiate the data that di↵erent entities
generate. To initiate the AR service, an MT (the context producer) generates the context, which is the raw
video feed of the scene, and sends it to its corresponding edge node. The edge node (the context consumer)
consumes the received data (context) to perform the requested service (either annotation, posture, or face
recognition) and produce the deep context; hence, the edge node is the deep context producer. Upon
generation of the deep context, the edge node sends it back to the MT, who is the deep context consumer.

4.2.1 Integration of NDN-Cert, NDN-RTC, and schematized trust

The communication between mobile devices and edge nodes will be signed to ensure data integrity and non-
repudiation. This requires certificate exchange between mobile devices and certificate authorities as well as
edge nodes and certificate authorities.

The existing implementation of NDN-Cert uses out-of-band challenge-response mechanism for the cer-
tificate request process. However, to make the process more seamless and less cumbersome for the ICE-AR
application, NDN-Cert application requires the following updates:

• Implement no-challenge mechanism.

• Implement checks on certificate authority (CA) database to prevent certificates from being issued to
di↵erent clients that request using the same namespace (identity).

Figure 4.1: Certificate Request Overview.

NDN-Cert application includes a client and a certificate provider application. The client applications will
be installed on the mobile devices as well as on edge nodes. The provider application serves as the certificate
authority and is the trust anchor for the certificate request process. Each namespace will have a dedicated
certificate authority as shown in Fig 4.1.

16

Identity and Certificate plurality.

Identity: /ndn/edu/nmsu/cs/fac/jaymisra
Location: /ice-ar/nmsu/cs,ece/SH/AP11/MD1

/ice-ar/nmsu/cs,ece/SH/AP11

Signature of content vs. signature of location.
Challenges of user privacy vs location privacy.

Name (hence identity) and certificate can be different!
Devices can get different certificates based on locations or
services.

Using NDN-Cert to obtain certificate
for a given namespace from a CA.

Certificate Request
Overview in NDN Cert

Works with trusted users.
What is the “challenge” for a guest?

Things to do:
Automate the process to remove manual user input
Design a mechanism for the guest to work
Identify a generic challenge mechanism for the users.
Integrate with Name-based access control.

Outline
♢ Introduction
♢ Schematized Trust Progress
♢ Access Control in the Context/Deep Context

Parlance
♢ Some other contributions
♢ Next Year

Access Control: Context + Deep Context

Mobile
Terminal

Edge Node 2

OpenFace

E(POV Video)
(NDN-RTC)

E(Deep Context)
(JSON)

NDN LAN

Edge Node 1

Yolo

E(Deep Context)
(JSON)

Edge Node 3

OpenPose

E(Deep Context)
(JSON)

Content
Publisher

(e.g., Google)

E(Context)

E(Content)
(HTML5)

Domain
Owner

(e.g., University)
E(Security)

Context Producer

Deep Context Producers

Deep Context Consumer

Context Consumers

Key; Trust; AC Mgmt
Content Producer

Content Consumer

Context & Deep Context

Owns the
namespace

Also, hosts CA
(can be separate
entity)

Set-up for Access Control

Mobile
Terminal

Edge Node 2

OpenFace

E(POV Video)
(NDN-RTC)

E(Deep Context)
(JSON)

NDN LAN

Edge Node 1

Yolo

E(Deep Context)
(JSON)

Edge Node 3

OpenPose

E(Deep Context)
(JSON)

E(Context)

Domain
Owner

(e.g., University)
E(Security)

Context Producer

Deep Context Producers

Deep Context Consumer

Context Consumers

Context (")	Production Key
% ","%

Deep Context ('")	Consumption Key
%() '", "%

Context (")	Consumption Key
%((", "%)

Deep Context ('")	Production Key
%) '", "%

Working on Protocol Design for AC

Domain OwnerEdge Node 1

Edge Node 1

Generate Context (C)
Consumption/Production Key:

<P(C,CP), Pr(C,CP)>

Generate Deep Context (DC)
Consumption/Production Keys and Deep

Context (DC) Symmetric Keys (e.g., three Apps):
<P1(DC,CP), Pr1(DC,CP)>: K1DC
<P2(DC,CP), Pr2(DC,CP)>: K2DC
<P3(DC,CP), Pr3(DC,CP)>: K3DC

Generate Deep Context (DC)
Signature Key:

<PEN1(DC,S), PrEN1(DC,S)>

Deep Context (DC) Symmetric
and Production Keys:

K1DC : P1(DC,CP)
K2DC : P2(DC,CP)
K3DC : P3(DC,CP)

Pr(C,CP)

PEN1(DC,S)

CertEN1(DC,S), Production Privilege, Pr(C,CP)
<P1(DC,CP), K1DC>, <P2(DC,CP), K2DC>, <P3(DC,CP),

K3DC>

Edge Node 2

Generate Deep Context (DC)
Signature Key:

<PEN2(DC,S), PrEN2(DC,S)>

Deep Context (DC) Symmetric
and Production Keys:

K1DC : P1(DC,CP)
K2DC : P2(DC,CP)
K3DC : P3(DC,CP)

Pr(C,CP)

PEN2(DC,S)

CertEN2(DC,S), Production Privilege, Pr(C,CP), <P1(DC,CP), K1DC>, <P2(DC,CP), K2DC>,
<P3(DC,CP), K3DC>

1

2
3

4

5

6

Mutual
authentication can
happen here

Edge Node 2 Domain Owner

Domain Owner

Domain Owner

Mobile Terminal 1

Mobile Terminal 1

Generate Context (C)
Consumption/Production Key:

<P(C,CP), Pr(C,CP)>

Generate Deep Context (DC)
Consumption/Production Keys and Deep
Context (DC) Symmetric Keys (e.g., three

Apps):
<P1(DC,CP), Pr1(DC,CP)>: K1DC
<P2(DC,CP), Pr2(DC,CP)>: K2DC
<P3(DC,CP), Pr3(DC,CP)>: K3DC

Generate Context (C) Signature Key:
<PMT1(C,S), PrMT1(C,S)>

Generate Context (C) Symmetric Key:
K1C

Registration: Credentials, PMT1(C,S)

Authenticate and Authorize Mobile
Terminal 1:

Authorized for Access Level 1

CertMT1(C,S), P(C,CP), Pr1(DC,CP)

Context (C) Symmetric and Production Keys:
K1C : P(C,CP)

Deep Context (DC) Consumption Key:
Pr1(DC,CP)

1

2

3

4

5

Outline
♢ Introduction
♢ Schematized Trust Progress
♢ Access Control in the Context/Deep Context

Parlance
♢ Some other contributions
♢ Next Year

Some other contributions
♢ Access Control edge and beyond

reduce the number of Bloom filter insertion operations, which
cumulatively is expensive.

In case that rE receives a content packet that includes a
NACK, it drops the request with Tu from its PIT (Lines 19-
20). Then rE forwards the D from provider p towards another
client w if Tw exists in its PIT and Tw 2 BF rE , otherwise it
validates Tw’s signature before inserting the Tw in the Bloom
filter and forwarding the content towards w (Lines 22-23).

B. Content Router Protocol
On receiving an interest with tag Tu, a content router rcC

checks the F value in the request (refer Protocol 3). If F is
zero, indicating that the corresponding rE could not validate
Tu, rcC looks up Tu in its Bloom filter (BF rcC). If Tu exists
in the Bloom filter, rcC sets the F value of the content D to
zero and returns the content-tag pair (Lines 1-3). Otherwise
(Tu /2 BF rcC), rcC validates Tu (Lines 4-5). Upon successful
validation, rcC inserts Tu into its Bloom filter, sets F to zero
for reminding rE that the tag is not available in its Bloom filter,
and returns the content-tag pair (Lines 6-9).

In an alternative scenario, F 6= 0, rcC either decides to re-
validate Tu with probability equivalent to F = BF rE (FPP)
or trust rE (Line 12). The rationale behind re-validating an
already validated tag is to prevent delivery of the content to an
invalid request (tag), which has been forwarded due to a false
positive in the edge router’s Bloom filter. For replying with the
content, rcC copies the received F value from the request to the
content packet D and returns the content-tag pair (Lines 13-16).
This prevents the corresponding edge router from re-inserting
Tu into its Bloom filter (refer to Protocol 2). If Tu fails the
validation process, ruC returns the content-tag-NACK tuple to
inform downstream routers on the invalidity of Tu (Lines 17-
19). In TACTIC, rcC returns the content D even if Tu is invalid.
This is to satisfy other possible valid aggregated requests in the
downstream routers.

C. Intermediate Router Protocol
Protocol 4 presents the procedure for request aggregation and

content forwarding at the intermediate routers (Ri
C); routers

that have not cached the requested content.
On Interest: On request arrival, an intermediate router (riC)

creates a PIT entry and forwards the request if there is no PIT
entry for content D (Lines 1-2). However, if the PIT exists,
riC adds the tuple < Tu, F, InFaceu > to the existing PIT
entry (Lines 3-5). The existing NDN implementation inserts
the entire interest into the PIT entry for aggregation. We note
that the addition of the tag adds an overhead to the PIT entry
but it is of the order of a couple hundred bytes.

On Content: When riC receives D without a NACK, it
returns the content-tag pair towards u over interface InFaceu
(Lines 6-7). In case that a NACK is attached to D, riC
forwards the content-tag-NACK tuple over InFaceu (Lines 8-
10). After handling the arrived content, riC needs to validate
the aggregated tags (Tw) for content D in the PIT (Line 11).
For each aggregated tuple, if F 6= 0 and riC decides not
to re-validate Tw, it sends the content on the corresponding

Protocol 3 Content Routers rcC 2 Rc
C Procedure

1: if F == 0 ^ Tu 2 BF rcC then

2: set F = 0 in D;
3: return < D, Tu >
4: else if F == 0 ^ Tu /2 BF rcC then

5: validate Tu’s signature
6: if Tu is valid then

7: insert Tu into BF rcC

8: set F = 0 in D
9: return < D, Tu >

10: end if

11: else if F 6= 0 then

12: validate Tu [with probability F]
13: set received F value in D
14: if Tu is valid _ decide not to validate then

15: return < D, Tu >
16: end if

17: else

18: return < D, Tu, NACK >
19: end if

face (InFacew) (Lines 12-13). A core router re-validates a
tag, when F 6= 0, with the false positive probability of the
corresponding edge router’s Bloom filter that can be obtained
from F . However, if F == 0 or riC decides to re-verify the tag
(with probability corresponding to F), it needs to validate Tw’s
signature (Lines 14-15). If Tw is valid, riC sets F to zero (if
it was zero), inserts Tw into its Bloom filter, and forwards the
content-tag pair towards client w on InFacew (Lines 16-21).
If Tw is invalid, riC forwards the content-tag-NACK tuple on
InFacew towards w (Lines 22-24).

D. Case Study
For a better explanation of the request processing procedures,

we use Fig. 3, with five clients requesting the same content
using their corresponding requests (R1, R2, R3, R4, R5)
containing unique tags, T1, T2, T3, T4, T5, respectively. The
clients’ numbers indicate the order in which clients request the

Client 1

Client 2

Client 3

Client 4
Edge Router

Edge Router Edge Router

Content Router

<T1,	Face1,	F=0.001>
<T3,	Face2,	F=0>

<T5,	Face3,	F=0.001>

PIT Entry
Client 5 <T1,	Face3,	F=0.001>

<T2,	Face2,	F=0>
<T4,	Face1,	F=0.002>

PIT Entry ! ≠ 0→	Probabilistically	validate	T1:
T1	valid:	Forward	the	content-tag.

! = 0→	validate	T1:
T1	valid:	Forward	the	content-tag.
T1	invalid:	Send	content-tag-NACK.Pending Interest Table

Fig. 3: Request processing routines on the edge (shaded in
orange), intermediate (shaded in blue), and content (shaded in
green) routers.

Tag based access control @ edge (ICDCS’18)

Client C2

Client C1

Router Provider

User Share
Assignment

User Share
Assignment

Content & EB
Satisfying

Request
Content

Request
Content

Content & EB
Satisfying

Cache Hit

Protocol 4

Protocol 4

Protocol 3

Protocol 3

Protocol 1

Protocol 2Registration

Registration

Phase

Phase

Fig. 2. Communication flow and protocols execution in the network.

of points on it, and keeps t of them as its own shares. The server
distributes n of the evaluated points among the n clients, one to
each legitimate client. This distribution happens at the time that
the client performs registration with the server (Protocol 3).

In the second step (Protocol 2), the server generates the
enabling block–an essential metadata block, which contains the
encrypted ⌧ , and is used by a client in the last step to extract ⌧ .
The enabling block is forwarded to the routers similarly as content
chunks and forms an integral part of the content. The client needs
to register itself with the server in the third step. Upon successful
registration, in the fourth step, the client retrieves the content
from the network. In the fifth step (Protocol 4), a legitimate
client extracts the encrypted ⌧ from the enabling block by using
his share.

As depicted in Fig. 2, the provider first generates a polynomial
and evaluates the server and clients’ shares. Each share is given
to a client upon a successful registration; this interaction is shown
in Fig. 2 by the dashed red arrows. A router receiving the first
request for a content forwards it to the provider for the content
and enabling block retrieval as shown by solid blue arrows. Upon
receiving the content and enabling block, the router caches and
forwards them to the client. The client uses the received enabling
block and its share to extract the content decryption key (refer
to Fig. 2). Subsequent requests for a cached content retrieve the
enabling block and content from the caching router.

B. Basic Protocols

We use a server S to illustrate the computations at the server(s)
or the CP. The server S generates the polynomial pt(x) and
calculates the tuple Ti = (xi, f(xi)) for each legitimate user ui.
Where it does not create confusion, in the context of the users,
we use share and tuple interchangeably. In what follows, we use
index i to represent the users’ shares and index j to represent the
server shares.

1) Polynomial and Shares Generation: Protocol 1 presents
the procedure for generation of the polynomial pt(x) of degree t.
In Line 1, the server generates the t+ 1 coefficients of pt(x). It

then generates its shares by identifying t random points (Lines 3-
5) on pt(x) and the n clients’ shares using n other points (Lines 6-
7). The dissemination of the users’ share happens through the
User Registration Protocol (Protocol 3). The CP encrypts the
content using a shared symmetric key ⌧ 2 Z⇤

Q. A bigger key
(say 128-bit AES key) can also be handled; we will discuss this
in Protocol 2.

Protocol 1 Generation of Polynomial/User Shares at the Server
Input: Values of n < Q and t, a prime number Q, ZQrand(),

and E = {}.
Output: Generates a polynomial pt(x) with random coefficients

a0, . . . , at and the tuple Tj for each user uj .
1: Calculates ai = ZQrand(), i = 0 to t.
2: Generates pt(x) using the ais.
3: Calculates xj = ZQrand(), j = 0 to t�1 and xj 6= xk, 0

j, k t�1. {Ensures xjs are positive, unique, and not reused
for clients}

4: Calculates f(xj) = pt(xj) 2 Z⇤
Q, j = 0 to t� 1.

5: Obtains E = E [(xj , f(xj)), j = 0 to t � 1. {Calculation
of each legitimate client’s share follows.}

6: Calculates xi = ZQrand(), i = t to n + t � 1, and
xi 6= xk, 0 i, k < n+ t� 1.

7: Calculates f(xi) = pt(xi) 2 Z⇤
Q, i = t to n+ t� 1.

8: Stores values Ti = (xi, f(xi)). {Tuple of user ui}

2) Generation and Encryption of Enabling Block: Protocol 2
deals with the generation of the enabling block, which enables
the legitimate user to extract the secret key ⌧ , and is delivered
to the user as one of the first content packets. By generating a
random number (Line 1), the server obtains the encrypted secret
key (�) using the field generator (g), polynomial constant (a0),
and the secret encryption key (⌧) in Line 2. Line 3 shows the
transformation of the group generator, g, by an exponentiation
operation with the generated random number r. In Line 4,
the server calculates ⇤ (partial Lagrangian coefficients), this
precomputed ⇤ is used at the client for calculating the complete
Lagrangian coefficients needed for decryption. As we will show in
Section 8 by comparing our framework (Global) with the standard
approach in literature (GlobalNP), this partial precomputation step
helps reduce the decryption time at the client tremendously. Thus,
our framework is computation-heavy at the server side, which
result in lightweight computations at the clients.

In Line 5, the server calculates the transformed enabling block,
obtained by raising g to the power of rf(xj) 8f(xj) 2 E. In
Line 6, the server puts together the enabling block SC . We will
discuss the need for timeout (Line 7) and how to decide a value
for TO in the next subsection. The enabling block SC is signed
by the server (Line 8) to guarantee provenance. A bigger key (say
128-bit key for AES) can be used by splitting the bigger key ⌥
into smaller sub-keys ⌥ = {⌧1|| . . . ||⌧b|| . . . ||⌧m}, where each
⌧b 2 Z⇤

Q and instead of sending �, the server can send {�1 =
⌧1g

ra0 , . . . , �m = ⌧mg
ra0}. The user will combine the split keys

Broadcast Encryption based access
control @ edge (TDSC’18)

Some other contributions
♢ Security, Privacy, and Access Control Survey

Security and Privacy Risks

Security

Denial of Service

Content Poisoning

Cache Pollution

Secure Naming &
Routing

Application Security

Privacy

Timing Attack

Monitoring Attack

Anonymity

Protocol Attack

Name & Signature

Access Control

Encryption Based

Encryption
Independent

Next Year
♢ Integrate Security into the application

¡ Plan to do first integration and testing in summer
and early fall.

¡ Refine design for meeting application needs
▷ Latency
▷ Different tolerance to security

♢ Implement Variable security
♢ Explore Edge computing security in the NDN

context

Looking Beyond: Community Security
Challenges.
♢ Application driven not application specific.

¡ Domain-specific and task specific security
♢ Security in the application-driven context.

¡ Security on a sliding scale
¡ Binary Trust does not work!

▷ Especially true in a dynamic or disaster environment

♢ Privacy-efficiency tradeoff.
¡ Better approach than just saying

▷ You want privacy? Then, there is no efficiency.
▷ You want efficiency? Then, there can be no privacy.

¡ Multi-stakeholder, multi-tenant, multi-user setting
▷ Data
▷ Computation
▷ Meta-data and Post-processed data

Thank You!

