
NDN-CNL: A Hierarchical Namespace API
for Named Data Networking

Jeff Thompson
UCLA REMAP

Los Angeles, California, USA
jefft0@remap.ucla.edu

Peter Gusev
UCLA REMAP

Los Angeles, California, USA
peter@remap.ucla.edu

Jeff Burke
UCLA REMAP

Los Angeles, California, USA
jburke@remap.ucla.edu

ACM Reference Format:
Jeff Thompson, Peter Gusev, and Jeff Burke. 2019. NDN-CNL: A Hierarchical
Namespace API for Named Data Networking. In ICN ’19: Conference on
Information-Centric Networking, September 24–26, 2019, Macao, China. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3357150.3357400

1 INTRODUCTION
The Named Data Networking Common Name Library (NDN-CNL)
is a high-level library that enables applications to work with hier-
archical, named data collections as an abstract interface to NDN’s
request-response protocol. This approach foregrounds the impor-
tance of application-named data in NDN applications and is in-
tended as an alternative to socket APIs. It aims to simplify program-
ming of asynchronous applications that use a variety of data-centric
approaches at the same time, including naming conventions for
versioning, segmenting, synchronization, name-based access con-
trol, name confidentiality, schematized trust, as well as standard
features needed in many applications such as interest pipelining
and latest data retrieval. This paper introduces the rationale and
design of the library, shows its use through a series of examples,
and concludes with a brief discussion of future work. Our empha-
sis is on introducing the new abstraction, so the library’s internal
implementation is not discussed in detail; source code is available
on Github.1

2 BACKGROUND
Named Data Networking (NDN) [9] is a proposed ICN network ar-
chitecture that forwards data directly based on application-defined
names. As a replacement for the TCP/IP architecture,2 it provides
request-response semantics at the network layer that are similar to
web semantics, but at packet granularity. It does this without requir-
ing host addressing or name-to-address mappings, such as those
provided by the Domain Name System (DNS). Each Data packet is
cryptographically bound to its name by a cryptographic signature

1github.com/named-data/cnl-cpp , github.com/named-data/PyCNL
2NDN can also run as an overlay on top of TCP/IP networks and, in fact, on top of
any medium that can carry bits.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICN ’19, September 24–26, 2019, Macao, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6970-1/19/09. . . $15.00
https://doi.org/10.1145/3357150.3357400

or similar mechanism. Stateful forwarding is used to route packets
through the network without source and destination addresses [6].

NDN makes named data the new “thin waist”, or common inter-
operability layer. It communicates using application-level naming,
which leads to systems that are semantically interconnected at the
network layer.

APIs for NDN application development have evolved over the
last eight years. The early CCNx API focused on wire format packet
assembly. PyCCN3 abstracted away the wire format details to pro-
vide an Interest-Data exchange API that was adopted and expanded
in ndn-cxx4 and NDN-CCL (Common Client Library)5. The Con-
sumer/Producer API introduced in [4] used a socket-style API to
provide higher-level functionality including reliability, verification,
and other features without requiring application developers to code
packet-level Interest-Data exchange directly. The NDN-CNL is writ-
ten on top of the NDN Common Client Library and thus occupies
an evolutionary branch adjacent to and inspired by the functional-
ity of the Consumer/Producer API, while introducing a new and
different abstraction that emphasizes the data namespace.

3 RATIONALE
The motivation for developing a namespace-oriented library is to
foreground a central abstraction of NDN and explore how to make
it available to software developers. In NDN, application objects
are represented as collections of immutable named data packets. For
example, an immutable file-like object is expressed as a sequence
of packets, each containing a chunk of the file; a mutable file is,
in turn, expressed as a collection of versions of those collections,
perhaps along with manifests and other metadata. Typically, these
objects and their constituent packets are hierarchically organized.
The names of prefixes correspond to the application objects made
up from the lower-level collection of packets. Our primary objective
was to foreground this concept. While many of NDN’s networking
benefits can be explored with packet granularity APIs, we propose
that its broader benefits to application authors (and effective use
of the underlying network capabilities) requires a data-centric API
abstraction, such as the NDN-CNL.

Practically, we are also interested in NDN becoming more com-
petitive as an application-level technology as the ICN research
field matures. Higher-level APIs are a necessity for this to happen.
We are seeking an NDN-based middleware replacement for our
own applications that provides the ability to write higher-level
data-centric networking code operating on application objects with
packet-level details left to reusable libraries. In our experience, it is

3github.com/named-data/PyCCN
4named-data.net/doc/ndn-cxx/current
5named-data.net/codebase/platform/ndn-ccl

30

https://doi.org/10.1145/3357150.3357400
github.com/named-data/cnl-cpp
github.com/named-data/PyCNL
https://doi.org/10.1145/3357150.3357400
github.com/named-data/PyCCN
named-data.net/doc/ndn-cxx/current
named-data.net/codebase/platform/ndn-ccl

ICN ’19, September 24–26, 2019, Macao, China Thompson, Gusev, and Burke

Listing 1: Segmented object example in Python.
1 face = Face()

2 image = Namespace("/foo/someimage /42")

3 image.setFace(face)

4 def onSegmentedObject(handler , obj):

5 print("Got image")

6 SegmentedObjectHandler(image , onSegmentedObject). objectNeeded ()

challenging for developers to use libraries focused on supporting
Interest-Data exchange (including our NDN-CCL) in applications
where they wish to simultaneously incorporate namespace syn-
chronization, schematized trust, and name-based access control, on
top of basic abstractions such as segmentation and versioning and
performance-motivated optimizations such as pipelined Interests.

Arguably, such higher-level interfaces are achieved (or could
be achieved) in the socket-inspired Consumer/Producer API [4].
However, that API does not expose or allow manipulation of the
hierarchical relationships between various types of application
data objects, and its affordances for succinctly composing new
combinations of features from basic capabilities are limited.

The intersection of our conceptual and practical goals led to
the approach discussed here, an abstraction that harmonizes han-
dling prefixes representing higher-level data objects with data-centric,
packet-level operations. This approach is inspired by and focused
on the importance of names in the architecture. At a high level,
we assumed that applications would often 1) use sync[5] to keep
namespaces updated; 2) use app conventions or standard metadata
to identify object types and other information necessary to know
how to process named branches; and 3) then publish or fetch data
of for relevant prefixes, using standard mechanisms for versioning,
segmenting, and so on. With this in mind, we designed an API6
to enable working with namespaces as if they represent hierarchi-
cal collections of objects. An added advantage of this approach
that address another long-standing desire is the ability to use the
in-memory namespace knowledge to enable developers to specify
names using wildcards and regular expressions that are not yet
practical to be applied at wire speed.

4 DESIGN
As discussed above, the NDN-CNL’s primary goal is to provide a
collection-oriented interface to NDN data that enables manipula-
tion of both application-level objects and data packets. We aimed
to achieve this with a small set of core features and minimizing
loss of generality relative to NDN-CCL. The library holds an in-
memory tree of Namespace nodes, where each node represents a
name, its parent represents the prefix of this name, and each child
represents the name with one appended name component. Thus,
the “namespace hierarchy" typically shown in an NDN application
design document is directly represented.

In the rest of this section, we describe the details of the design,
which is inspired by a number of APIs and query languages that
allow direct access to and manipulation of hierarchically-organized
data, from the XPath query language for XML documents to the
Google Cloud Firestore, which supports hierarchical key names for
6named-data.net/doc/ndn-ccl/latest/PyCNL

its cloud-native NoSQL database. While the CNL does not itself
provide a detailed query language for namespaces (yet) or the fea-
tures of a distributed database, the examples in the next section
show how the availability of local namespace knowledge makes
it possible to quickly create applications whose code is similarly
organized around a distributed dataset itself, rather than around
communication details, while maintaining the lower-level benefits
of the NDN architecture, such as intrinsic multicast, data-centric
security, etc. To repeat the point made at the end of the last sec-
tion, this approach will typically require the availability of robust,
efficient namespace synchronization protocols, which is an open
research topic.

A key observation that informs the NDN-CNL design is that,
in NDN, either leaf or parent nodes (or both) in a named data
hierarchy can correspond to application data objects. And, though
names corresponding to packets refer to immutable data, prefixes
often refer to mutable application-level objects. Consider the simple
example: /foo/someimage/<version>/<segment>. There may be
many immutable NDN objects with fully specified names of this
format in an application. In addition, from the application’s point of
view /foo/someimage is a mutable object that has a latest version,
and /foo/someimage/42 is one such specific (immutable) version.
(Listing 1 shows a CNL example that fetches all the segments of
this version, assembles them in order and notifies the application
which prints “Got image".) An application which only cares about
high-level objects may monitor direct children of /foo/someimage
to be alerted when new versions arrive. But an application can also
monitor changes in deeper levels of the Namespace, e.g. individual
segment packets, to measure progress in assembling the higher-
level object. The Namespace tree provides a unified API for these
different tasks.

A second observation is that an applicationmay become aware of
a new name (at any depth) in a number of ways, including: 1) it may
create a new object; 2) it may need a new object and know some of
the name; 3) it may opportunistically overhear a packet with the
name from another node, e.g., in a wireless multicast environment;
4) it may use synchronization to retrieve names of interest.

Based on these two observations, along with the concept that
packet-level data objects on the network and in storage are im-
mutable while application objects represented by prefixes in the
hierarchy may be considered mutable by the application, we de-
signed the node state diagram shown in Figure 1. This state diagram
is based on commonly discussed and implemented steps in the ap-
plications that we have been developing and are aware of. Again, it
reflects that both leaf and parent nodes may represent data objects
from an application’s perspective, but can potentially use the same
API.

31

named-data.net/doc/ndn-ccl/latest/PyCNL
/foo/someimage/<version>/<segment>
/foo/someimage
/foo/someimage/42
/foo/someimage

NDN-CNL: A Hierarchical Namespace API
for Named Data Networking ICN ’19, September 24–26, 2019, Macao, China

Typically, a higher-level object7 goes through states such as “Seri-
alizing" and “Signing" based, ultimately, on the states of descendant
leaf nodes which hold the individual immutable Data packets that
are transmitted. One could, though, provide a specific handler to
support manifest-level signatures and other approaches as well.

An application interacts with the CNL through the nodes in the
Namespace tree, either by calling methods on the node objects, or
by registering callbacks which notify the application of a change
of state of Namespace nodes. Other APIs for NDN applications
strictly separate the API for producer and consumer. But the CNL
Namespace tree provides a common workspace where objects that
are produced both by the application or received from the network
are attached to the Namespace node with the object name, removing
the strict separation between producer and consumer.

The state machine in Figure 1 shows that both the “producer
arc" on the top and “consumer arc" on the bottom begin with call-
ing the objectNeeded() method of a Namespace node. When the
CNL receives an Interest, it calls objectNeeded() on the node with
the Interest name. The application can register to respond when
objectNeeded() is called, produce the object and attach it to the
Namespace. The CNL then uses it to answer the Interest, thus act-
ing like a producer. If the CNL receives another Interest which
is satisfied by an object already stored in the Namespace tree, it
responds immediately, thus acting like a content cache. Likewise,
the application can call objectNeeded() on a Namespace node. If the
Namespace tree does not already have the object, the CNL sends
an Interest to the network. When it receives the matching Data
packet, the CNL attaches it to the Namespace (possibly decrypting
and deserializing) and calls the application callback, thus acting
like a consumer. Furthermore, one part of an application can call
objectNeeded() and another part of the application can respond to
this by producing the object, allowing “producer" and “consumer"
communication within the application.

The CNL also provides a suite of handlers (see examples below) to
handle typical data patterns such as segmented content, versioned
objects, or latest data retrieval. A handler is assigned to a portion
of the Namespace tree and calls methods or registers callbacks to
respond to changes (the same way an application would). A handler
can also serialize one application object into one or more Data
packets, and deserialize multiple Data packets into one application
object. This is why the final state in Figure 1 says “Object ready"
instead of “Data packet ready". The CNL allows the application to
be abstracted away from the binary blobs in network-level Data
packets and to interact with a meaningful object managed by a
handler, e.g. a JSON object.

Multiple handlers can be assigned to combine functionality. The
developer can write an application to handle a binary segmented
object under one child namespace (e.g., /foo/%00, etc.) and later
assign another handler which serializes/deserializes as JSON under
a different child namespace (e.g., /foo/json). Testing full compos-
ability and how to manage potential conflicts of multiple handlers
is still a research topic.

7One current limitation to the design is that a name cannot function as a prefix and
data object at the same time. Once a leaf node has a Data packet, a packet with the
same name but different content cannot be attached, nor can a child node have a Data
packet; this simplifies the implementation and may be relaxed in the future.

As objects are produced or consumed and attached to Names-
pace nodes, the application can traverse the objects or perform
more complex operations on names, such as regular expressions
or transformations, which are not directly supported by the net-
work. This convenience comes at the price of memory usage that
may be significant for large numbers of objects. The handlers pro-
vided by the CNL partially mitigate this by deleting intermediate
results (or auxiliary handlers) when the final object is reported to
the application.

5 IMPLEMENTATION
The NDN-CNL is built on the NDN Common Client Library (CCL).
The CCL is implemented in C, C++, Python, JavaScript, Java, C#
and Squirrel. The CNL is currently implemented in C++, Python
and C#, with plans for the others. The CNL relies on the application
to supply callbacks which are called when the state of the Names-
pace tree changes, and uses the standard callback mechanism of
each language. As with the CCL, the API for the CNL remains
the same across languages, to enable experimentation in different
development environments.

The CNL has been used in an Augmented Reality application [1]
to communicate video frame annotations (e.g. object recognition).
A C++ application receives video, processes the frames and adds the
annotations to its CNL Namespace tree. The consumer application
in Python creates a CNL GeneralizedObjectStreamHandler (see
below) which fetches the stream of annotations and adds them
to its Namespace tree, calling the application callback when each
arrives. If the consumer application needs older annotations, it
simply browses the Namespace tree.

The CNL has also been used in a data repository application
(work in progress)8. The repository enables CNL’s sync capability
(see Section 6.3 below). Producer applications also enable sync and
add objects to the CNL Namespace tree that they want to store. The
repository receives the announcements of new names, fetches the
objects and stores them.

The initial CNL implementation allowed the application to re-
ceive separate callbacks for each state change event, such as “Name
added", “Interest expressed" and “Object ready". But since the state
diagram (Figure 1) is well-defined, we found it simpler for the appli-
cation to receive one callback for “state changed" with a parameter
for the state. Also, since the application mainly interacts with the
CNL through handlers, in most cases it is easier to use handler-
specific callbacks such as “received generalized object".

6 EXAMPLES
We use a series of simple examples to further illustrate the basic
abstractions and how the library is used. In these examples, we
introduce how a developer might write code using pre-existing
handlers for common object types and functionality; a detailed
discussion of how handlers are written is outside the scope of
this paper, but the interested reader can review the source code
referenced in the introduction.

8github.com/remap/fast-repo

32

/foo/%00
/foo/json

ICN ’19, September 24–26, 2019, Macao, China Thompson, Gusev, and Burke

NAME	
EXISTS	

INTEREST	
EXPRESSED	

DATA	
RECEIVED	 DECRYPTING	

OBJECT	
READY	

OBJECT	
READY	BUT	

STALE	

VALIDATING	
(ALL)	

VALIDATE	
SUCCESS	

(ANY)	
VALIDATE	
FAILURE	

WAITING	
FOR	DATA	

(ANY)	
DECRYPTION	

ERROR	

(ANY)	
INTEREST	
TIMEOUT	

(ANY)	
INTEREST	
NETWORK	
NACK	

PRODUCING	
OBJECT	 ENCRYPTING	

(ANY)	
ENCRYPTION	

ERROR	

SIGNING	

(ANY)	
SIGNING	
ERROR	

objectNeeded()	 SERIALIZING	

serializeObject()	

DE-
SERIALIZING	

If	an	aggregate	object	
with	versioning,	for	

example	

To	objectNeeded()	

An	OnObjectNeeded	
answers	true	

All	OnObjectNeeded	
answer	false	

Reply	to	pending	
incoming	Interests	

Namespace	state	
Namespace	method	call	
Validation	state	
Not	implemented	(TBD)	

Figure 1: NDN-CNL Name node state diagram. Signing/validation and encryption/decryption may be performed at the packet
and/or object level, depending on the object type implemented by associated handlers.

6.1 Generalized Objects
Through writing applications for NDN for several years, we have
identified some commonalities in network data objects, and at-
tempted to generalize them in newer applications. We are currently
experimenting with a “generalized object” type and have imple-
mented support in the NDN-CNL to test both the applicability of the
object format and the ability of the CNL’s Namespace abstraction
to implement simple ways of working with it.

Figure 2 shows the namespace of a generalized object, which has
content defined by a content type and timestamp, where the con-
tent is segmented only if needed. (object_prefix)/_meta is a signed
packet with the content type and timestamp. In many cases, the
content is small enough and is placed in the “other" section of the
_meta packet, with no further processing. Otherwise, the content
is segmented into (object_prefix)/%00%00, (object_prefix)/%00%01,
etc. To save processing time and bandwidth, the segment packets
are not signed, but their digests are placed in the signed _manifest
packet. As the consumer fetches the segments, it computes and
saves their digests. Finally it verifies the signature on the _manifest
packet and verifies that the segment digests are the same as it com-
puted. Overall, the generalized object aims at achieving flexibility
in fetching names by separating different types of metadata and
payload, and allows consumer applications to decide on what needs
to be fetched and when. For example, a consumer may opt not to
verify data segments right away and not fetch the _manifest until
later.

Listing 2 shows an example generalized object producer. Lines
1-3 create the system default communication Face and a KeyChain
for signing packets with the default identity. Line 4 creates a CNL
Namespace object with the object prefix. Line 5 tells the CNL to

use the created Face to exchange data within this namespace, and
to register to receive Interests with its prefix. Finally, line 7 creates
a GeneralizedObjectHandler and uses it to set the object for the
namespace to have the given string and a content type of “text/html".
The handler (not shown) creates the _meta packet and segment
packets, if necessary, as child Namespace objects following the
namespace design in Figure 2. The CNL will use these to answer
Interests.

Listing 3 shows the related generalized object consumer. Line
1 creates the default communication Face. Lines 2 and 3 create a
CNL Namespace object and tell the CNL to use the Face. Line 4 sets
a callback which the library calls on validation failure. When the
GeneralizedObjectHandler finishes fetching the generalized object,
it will call the callback defined on line 6, where contentMetaInfo
is an object containing the content type and timestamp from the
_meta packet, and objectNamespace is the CNL Namespace object
to which the retrieved object is attached. Line 9 creates a Generalize-
dObjectHandler to use this callback, and to attach to the Namespace
as its handler. Finally, it calls objectNeeded() so that the CNL begins
fetching and alerting the handler to process. When the handler has
assembled the object (possibly from segments), it calls the callback.

6.2 Generalized Object Stream
The generalized object can be extended to a stream of objects, each
with an incremented sequence number. For example, an applications
may produce annotations for a video at regular intervals. Figure 3
shows the generalized object stream namespace. It is similar to the
generalized object, but instead of a fixed object prefix, the stream
of generalized objects have the prefixes (stream_prefix)/(sequence
N), (stream_prefix)/(sequence N+1),

33

NDN-CNL: A Hierarchical Namespace API
for Named Data Networking ICN ’19, September 24–26, 2019, Macao, China

NDN Data Packets
Payload

<object_prefix>

_meta _manifest %00%00 %00%01 ... %00%NN

Content-Type

Timestamp

Content-Size

Other

seg0 digest

seg1 digest

...

segNN digest

0 1 ... N

Figure 2: Generalized Object Namespace

Generalized Object Namespace

<seq #>

...

<stream_prefix>

_latest

...

<version #>

<stream_prefix>/<seq#>

_meta _manifest

...

%00%00

...

%00%01

... ...

Figure 3: Generalized Object Stream Namespace

Similar to the GeneralizedObjectHandler, a GeneralizedObject-
StreamHandler can be attached to a CNL Namespace for the stream
prefix. The producer application repeatedly calls the handler’s ad-
dObject(object). This increments the sequence number and inter-
nally uses a GeneralizedObjectHandler to place the packets for the
object in the children of the Namespace. As before, the CNL will
use these to answer Interests.

When the GeneralizedObjectStreamHandler in the consumer
application initializes, it needs to know the latest sequence number
to start fetching. It uses the real-time data retrieval (RDR) protocol
[3], sending an Interest for (stream_prefix)/_latest which returns
a signed, versioned Data packet with a short freshness period whose
content is the name of the latest sequence, e.g. (stream_prefix)/(sequence
N). To fetch the stream, the handler uses an Interest pipeline by
always keeping a fixed number outstanding Interests for the next se-
quence numbers. It internally attaches a GeneralizedObjectHandler
to the sequence number Namespace object to fetch the object and
call the application’s callback when it arrives. If the Interest for
the highest sequence number times out, the handler restarts by
repeatedly using RDR to try to get the latest sequence number.

Some applications produce a stream of generalized objects but
at sporadic intervals, so an Interest pipeline is not appropriate. In
this case, the handler is configured to repeatedly use RDR to ask
for and fetch the latest sequence number.

6.3 Name Synchronization with PSync
With the CNL, applications may know and operate on namespaces
for which they do not yet have some or all of the data. This is
partially inspired by the concept of “sync” in the NDN architecture,
which uses efficient set reconciliation techniques to synchronize
namespaces across multiple nodes, after which Interest-Data ex-
change can optionally be used by each node to fetch named data of
interest. [2]

The CNL currently supports the PSync protocol [10] to synchro-
nize namespaces between instances. When an application creates a
CNL Namespace object, it can enable sync at a point in the Names-
pace tree. The CNLwill join the sync group. Any new names created
by the application in the Namespace to a specified depth are an-
nounced to other users in the sync group. (The depth limitation
allows, for example, announcing the name of a new version, but
not the child names containing segment numbers.) Likewise, when
new names are announced by other users, the CNL adds the names
to the Namespace tree and the application which monitors the
Namespace can take action, e.g. to fetch the content.

The CNL has a test_sync9 example, which is ostensibly run by
two different users. Each instance creates a CNL Namespace for
the prefix /test/app, and enables sync. Each instance also creates a
user prefix, e.g. /test/app/alice or /test/app/bob, and then creates
child Namespace objects under this prefix, e.g. /test/app/bob/1,
test/app/bob/2. Because both instances are in the sync group, they
receive the announced names from the other user which are added
to its own Namespace tree. The application monitors changes to
the Namespace, detects the other user’s new names and displays
them.

The CNL uses the PSync protocol at this time because it can
efficiently represent large sets of names through the use of Invertible
Bloom Filters (IBF). A full discussion of PSync is outside of the
scope of this paper, but in practice, in the CNL, an application can
announce up to 275 names on each update. (If the set difference
is larger than this, then the application sends a “recover" message
with all of its names.)

6.4 Schematized Trust & Name-based Access
Control

The CNL supports schematized trust [7] through the capabilities of
the underlying CCL library, and as shown in the state diagram of
Figure 1. As the code listings cited above show, a producer applica-
tion assigns an NDN-CCL KeyChain object to a Namespace node
which is used to sign Data packets created for it and child nodes.
(The KeyChain can be configured for different signing identities and
algorithms.) Likewise, a consumer application can assign a CCL Val-
idator, where packets are validated in parallel to other processing.
An application callback can receive a “Validate failure" notification
and take appropriate action. At the implementation level, the CCL
provides a specialized Validator for schematized trust which the
consumer configures with a policy to enforce relationships between
the names of a packet and its signer.

Encryption/decryption is similarly built on the CCL, which pro-
vides an API for Name-based Access Control10 (NAC)[8]. Each Data
9github.com/named-data/PyCNL/blob/master/examples/test_sync.py
10github.com/named-data/name-based-access-control/blob/new/docs

34

github.com/named-data/PyCNL/blob/master/examples/test_sync.py
github.com/named-data/name-based-access-control/blob/new/docs

ICN ’19, September 24–26, 2019, Macao, China Thompson, Gusev, and Burke

packet is encrypted with a random content key, independent of the
user. Each content key is encrypted with the public key of an RSA
key pair. Then an “access manager" creates Data packets whose
name is based on the names of the content and of a consumer who
needs access to the associated private key (hence “name-based"
control). The API provides a Decryptor object for the consumer
which uses this naming convention to fetch this packet and recover
the content key to decrypt the Data packet. (Details omitted for
brevity.)

In the CNL, decryption is one of the steps of the standard Names-
pace node state machine (Figure 1). To enable decryption, the con-
sumer creates a Decryptor object with its name and connected to
its RSA keypair in the KeyChain. Then, the consumer calls setDe-
cryptor() on the CNL Namespace object which will use it to decrypt
incoming Data packets for this and child nodes. This is shown in
the test_nac_consumer11 example. It uses the same segmented ob-
ject handler as the simple segmentation example, but the CNL uses
the supplied Decryptor to automatically decrypt the segment Data
packets from the producer12. These examples illustrate how the
CNL can compose different functionalities.

6.5 Wildcards & Regular Expressions
Two common questions that we have received from application de-
velopers are 1) how to enumerate objects available in a namespace
and 2) how to retrieve objects matching a certain pattern. There
is currently no direct architectural or forwarder support for either
operation. However, building blocks for providing these features
within a given application context are available. For example, an
application could use a synchronization protocol, such as that de-
scribed in Section 6.3 above, to share knowledge of a namespace
among many instances– which is enabled with a single method call
for a Namespace in the CNL. Then, it can run filtering or matching
operations on the local knowledge of the namespace with only a
few lines of code. See Listing 4 for a simple example. The CNL does
not yet provide extensive name matching and iteration methods,
but we expect that these can be built relatively simply because of
its approach of holding namespace knowledge locally.

7 CONCLUSION
The NDN-CNL is an application-inspired, collection-based API for
data-centric networking. The features and examples discussed in
the previous section have all been implemented in C++, C#, and
Python. The library has had some initial use in research applications
in our lab, including a mixed reality production described in [1].
The CNL implicitly captures some design strategies that we have
used repeatedly in NDN applications, including: 1) use of prefixes
to represent mutable application-level objects; 2) synchronization
to gather local knowledge of a namespace; 3) an application-level
cache that enables publish-and-forget behavior, allowing the library
to independently respond to incoming Interests whenever possible.
It enables features we have long sought, including wildcard and
regular expressions on names, and attempts to ease a key pain
point in NDN development: the integration of asynchronous, data-
centric approaches to authenticity and confidentiality, processing

11github.com/named-data/PyCNL/blob/master/examples/test_nac_consumer.py
12github.com/named-data/PyCNL/blob/master/examples/test_nac_producer.py

of common data types, and lower-level features such as reliability
and real-time data retrieval.

In addition to limitations and areas of future work identified
earlier, other design issues include how to best propagate events
from individual low-level packets, such as timeouts, validation
failure, expired freshness, etc., to higher-level objects, as well as
approaches to integrating storage for persistence and lowering
memory requirements. A variety of implementation opportunities
also remain, such as maintaining statistics on prefixes (e.g., Interest
retransmission, RTT, etc.) and optimization of the performance of
the library as an application-level cache. Even at this early stage of
development, we hope this API and implementation will be valuable
to the ICN community and generate other approaches to support
application development over ICN architectures with higher-level
APIs without the loss of benefits from NDN’s packet-level data-
centric design.

ACKNOWLEDGMENTS
The authors thank Lixia Zhang and Alex Afanasyev for their input
on the CNL and Ashlesh Gawande for help integrating PSync. Por-
tions of this work were supported by NSF Award Nos. CNS-1719403
and CNS-1629922 and the Intel ICN-WEN program.

REFERENCES
[1] Peter Gusev, Jeff Thompson, and Jeff Burke. 2019. Data-centric video for mixed

reality. In 2019 28th International Conference on Computer Communication and
Networks (ICCCN). IEEE.

[2] Tianxiang Li, Wentao Shang, Alex Afanasyev, Lan Wang, and Lixia Zhang. 2018.
A Brief Introduction to NDN Dataset Synchronization (NDN Sync). In MILCOM
2018-2018 IEEE Military Communications Conference (MILCOM). IEEE, 612–618.

[3] Spyridon Mastorakis, Peter Gusev, Alexander Afanasyev, and Lixia Zhang. 2018.
Real-Time Data Retrieval in Named Data Networking. In 2018 1st IEEE Interna-
tional Conference on Hot Information-Centric Networking (HotICN). IEEE, 61–66.

[4] Ilya Moiseenko, LijingWang, and Lixia Zhang. 2015. Consumer/producer commu-
nication with application level framing in named data networking. In Proceedings
of the 2nd ACM Conference on Information-Centric Networking. ACM, 99–108.

[5] Wentao Shang, Yingdi Yu, Lijing Wang, Alexander Afanasyev, and Lixia Zhang.
2017. A Survey of Distributed Dataset Synchronization in Named Data Networking.
Technical Report NDN-0053. NDN.

[6] Cheng Yi, Alexander Afanasyev, Ilya Moiseenko, Lan Wang, Beichuan Zhang,
and Lixia Zhang. 2013. A Case for Stateful Forwarding Plane. Computer Commu-
nications: ICN Special Issue 36, 7 (April 2013), 779–791.

[7] Yingdi Yu, Alexander Afanasyev, David Clark, kc claffy, Van Jacobson, and Lixia
Zhang. 2015. Schematizing Trust in Named Data Networking. In Proc. of ACM
ICN.

[8] Yingdi Yu, Alexander Afanasyev, and Lixia Zhang. 2016. Name-Based Access
Control. Technical Report NDN-0034. NDN.

[9] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc claffy, Patric
Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named
Data Networking. ACM Computer Communication Review (July 2014).

[10] Minsheng Zhang, Vince Lehman, and Lan Wang. 2016. Partialsync: Efficient
synchronization of a partial namespace in ndn. Technical report, Technical Report
NDN-0039, NDN (2016).

35

github.com/named-data/PyCNL/blob/master/examples/test_nac_consumer.py
github.com/named-data/PyCNL/blob/master/examples/test_nac_producer.py

NDN-CNL: A Hierarchical Namespace API
for Named Data Networking ICN ’19, September 24–26, 2019, Macao, China

Listing 2: Generalized object producer.
1 face = Face()

2 keyChain = KeyChain ()

3 face.setCommandSigningInfo(keyChain , keyChain.getDefaultCertificateName ())

4 objectPrefix = Namespace("/ndn/eb/run /28/ description", keyChain)

5 objectPrefix.setFace(face ,

6 lambda prefixName: dump("Register failed for prefix", prefixName))

7 GeneralizedObjectHandler (). setObject(

8 objectPrefix , Blob("EB run #28. Ham and oats"), "text/html")

Listing 3: Generalized object consumer.
1 face = Face()

2 objectPrefix = Namespace("/ndn/eb/run /28/ description")

3 objectPrefix.setFace(face)

4 objectPrefix.addOnValidateStateChanged(lambda ns, changedNS , state , ID: print(

5 "Validate failure" if state == NamespaceValidateState.VALIDATE_FAILURE else ""))

6 def onGeneralizedObject(contentMetaInfo , objectNamespace):

7 print("Got generalized object , content -type " +

8 contentMetaInfo.contentType + ": " + str(objectNamespace.obj))

9 GeneralizedObjectHandler(objectPrefix , onGeneralizedObject). objectNeeded ()

Listing 4: Simple wildcard example.
1 applicationPrefix = Namespace(Name("/test/app/users"), keyChain)

2 applicationPrefix.setFace(face ,

3 lambda prefix: dump("Register failed for prefix", prefix))

4 applicationPrefix.enableSync () # Sync with other instances using this namespace

5 # ... Since the Namespace object childComponents is iterable , enumerate simply elsewhere -

6 regex = re.compile("Bob.*")

7 for child in filter(lambda c: regex.match(str(c)), applicationPrefix.childComponents):

8 applicationPrefix[child]. objectNeeded(True) # generate interests to retrieve

36

	1 Introduction
	2 Background
	3 Rationale
	4 Design
	5 Implementation
	6 Examples
	6.1 Generalized Objects
	6.2 Generalized Object Stream
	6.3 Name Synchronization with PSync
	6.4 Schematized Trust & Name-based Access Control
	6.5 Wildcards & Regular Expressions

	7 Conclusion
	Acknowledgments
	References

