
Publish-Subscribe Communication in Building
Management Systems over Named Data Networking

Wentao Shang∗, Ashlesh Gawande†, Minsheng Zhang†, Alexander Afanasyev‡,
Jeffrey Burke∗, Lan Wang† and Lixia Zhang∗

∗UCLA
{wentao,lixia}@cs.ucla.edu, jburke@remap.ucla.edu

†University of Memphis
{agawande,mzhang4,lanwang}@memphis.edu

‡Florida International University
aa@cs.fiu.edu

Abstract—Publish-subscribe (pub-sub) has been recognized as
a common communication pattern in IoT applications. In this
paper we present ndnBMS-PS, a distributed pub-sub communi-
cation framework for building management systems (BMS), an
important area of IoT, over the Named Data Networking (NDN)
architecture. ndnBMS-PS utilizes distributed NDN repositories
to store and republish large quantities of BMS data that can be
consumed by different applications. It employs a data synchro-
nization mechanism to aggregate multiple data streams published
by multiple sensing devices and achieve efficient notification
of new data for the consumers. ndnBMS-PS also provides
data authentication by utilizing NDN’s security building blocks.
This design exercise demonstrates that the information-centric
architecture enables a simple design for complex IoT systems and
provides superior system efficiency and security over TCP/IP-
based alternatives.

I. INTRODUCTION

Enterprise Building Automation and Management System
(EBAMS, or BMS for short) is a key IoT application used by
enterprises to monitor building environment and lower costs. A
typical BMS deployment may spread across multiple buildings
on an enterprise campus, potentially with tens of thousands
of sensors installed on the premises to monitor electricity,
lighting, temperature, humidity, and many other environmental
measurements. Recent years have witnessed an extensive effort
by both industry and research communities to adapt or enhance
the current TCP/IP architecture to support BMS, yet many
challenges remain. For example, sensing devices may have
intermittent connectivity and use duty cycles to save energy,
while IP communication assumes a devices being “always on”
model, and the associated channel-based security requires the
two communicating end points be online at the same time.
Moreover, it is tedious and error-prone to manually set up and
manage IP-based BMS systems as IP addresses do not reflect
the relationship among the entities in the system, including
the sensing devices, sensor data, environment being sensed,
operators, and other users.

We believe that the above challenges intrinsically come from
the incongruity between TCP/IP’s basic communication and
security model and the functional requirements of IoT appli-
cations [1]. In contrast, several built-in architectural features in

Named Data Networks (NDN), including expressive naming,
data-centric security, and in-network caching, can be utilized
to directly address the identified challenges and enable one to
build scalable and secure IoT applications [2], [3] over NDN.

For a proof of concept, we have designed a publish-
subscribe communication framework called ndnBMS-PS for
BMS environments over the NDN architecture [4]–[6]. We
have implemented ndnBMS-PS on the NDN platform [7]
and evaluated it using our emulation tool Mini-NDN. This
work serves as a case study to illustrate i) the use of NDN
architectural features to develop a specific IoT application,
and ii) the unique application design patterns that arise from
a data-centric communication model.

The core functionality of a building management system is
the production and consumption of sensing data. As such, a
major design challenge is how to enable individual applica-
tions to retrieve sensing data of their interest in real time. Note
that (1) the number of sensors and consumers can potentially
be very large; (2) each data-consuming application may be
interested in a different subset of the sensing data; and (3)
sensors and consumers may not be online at the same time.
To address these data communication challenges, ndnBMS-PS
leverages distributed NDN data repositories (repos in short) as
intermediaries to decouple data production and consumption,
and incorporates an efficient pub-sub mechanism (built on
top of NDN’s request-response primitives) for consumers
to subscribe to arbitrary data sets of interest (Section III).
Through this design exercise we also demonstrate the utility of
NDN Sync protocols (Section II) in facilitating distributed data
production and subscription in a data-centric communication
model.

Security is critical for building management systems.
ndnBMS-PS ensures data authenticity using a hierarchical
trust model to verify the signature in each piece of received
data (Section III-E). The authentication policy is encoded in
a trust schema that leverages the expressive power of data
naming [8]. This data-centric security model differs from
TCP/IP’s channel-based security model in a fundamental way:
it ensures that the security protection stays with the data itself,
without dependency on the secure channels (e.g., a TLS/DTLS

1

session) between communicating entities.
In the remainder of this paper, we first give some back-

ground on this work (Section II), and then present our system
design (Section III) and evaluation (Section IV). We also
review the literature of pub-sub systems proposed for other
ICN architectures (Section V). Finally we conclude the paper
and address future work in Section VI.

II. BACKGROUND

A. Data Acquisition and Access in BMS

In a typical BMS deployment, sensors are often hardwired
to smart panels or controllers that are connected to a com-
mon high-speed backbone network, usually physically and/or
logically isolated from other internal and external networks.
Future BMS may also incorporate wireless sensors that are
associated with a wired aggregator, or even connect low-cost,
wireless sensors directly to the network.

In such systems, different types of sensors continuously
generate a large amount of measurements such as room
temperature, power consumption, and chilled water flow. Due
to limited storage and processing capability on typical panels
and controllers, those measurement data have historically been
collected into dedicated storage at the enterprise level and
archived for certain period of time (typically one or two years)
in order to serve different data analytics applications.

Enterprise level BMS requires advanced data access sup-
port to meet various application requirements including the
following:

• Different consumers may be interested in different sens-
ing data. Requiring direct communication between each
sensor - consumer pair would not scale well.

• Consumer applications may run on diverse platforms
ranging from high-end servers, smartphones, to embedded
systems. These applications consume the sensor data at
different times and speeds and may not always be online
when new data is produced.

• Different applications may have different semantics in
data consumption. For example, some applications may
be interested only in the latest data generated in real time,
while others would want to periodically receive a few
random samples from a batch of collected data.

B. NDN and BMS

NDN is a new Internet architecture that provides data-
centric communication at the network layer. NDN implements
an asynchronous request-response communication pattern that
naturally decouples data producers and consumers. It defines
two types of network layer packets: Interest and Data. Each
data producer assigns a unique and semantically meaningful
name to every Data packet it generates. Each consumer issues
an Interest packet with a data name or name prefix, which
is forwarded based on the name (prefix). For each received
Interest, NDN forwarders use forwarding strategies [9] to
decide where to forward the Interest by taking into account
the usage policies, the forwarding table, and the measurement
from previous forwarding decisions. When an Interest meets a

Data packet with a matching name, the Data packet is returned
to the consumer.

Every Data packet carries a cryptographic signature, se-
curely binding the content to the name, which ensures integrity
and provenance of the data. As such, NDN Data packets
can be retrieved from either original data producers, managed
data storages (repos), or opportunistic caches, enabling asyn-
chronous data production/consumption and significantly im-
proving the overall scalability and efficiency in data delivery.
NDN data is also immutable: any change to a piece of existing
data produces a new version of the data with a different name.

NDN brings several important benefits to the design and
implementation of BMS. First, NDN forwards Interest and
Data packets using the application-layer names, which elimi-
nates the need to configure BMS networks with IP addresses,
a significant simplification when a BMS system is made
of a large number of sensors, actuators, and controllers.
Second, NDN’s data-centric security mechanism inherently
secures every produced piece of data, instead of relying on
physical/logical isolation and communication channel security.
Finally, the in-network storage including forwarder caches and
repos reduces the query load on sensors and improves the
scalability of the BMS data communication.

Our previous work on NDN-BMS [10] designed a BMS data
acquisition system over NDN and demonstrated the design of
the data namespace, collection of the data from off-the-shelf
devices into NDN repositories (repos), and data security via
packet signatures and encryption-based access control. How-
ever, NDN-BMS does not support publish-subscribe communi-
cation model to enable efficient and timely delivery of newly
published data to consumers who subscribe to multiple but
different subset of sensing data simultaneously. In comparison,
ndnBMS-PS develops a generic pub-sub communication sup-
port as a data transport service on top of the data acquisition
system to facilitate heterogeneous consumer applications in
accessing sensing data.

C. Data Synchronization in NDN

Data synchronization (Sync) is an important building block
for distributed applications. While distributed applications may
differ in their specific goals and communication patterns,
they share a common need for synchronizing the application
datasets among multiple parties. Since distributed applications
are a generalization of 2-party communications, one may view
Sync as a generalization of end-to-end reliable data delivery
among multiple parties.

NDN is particularly suited in supporting multi-party com-
munication synchronizations. Since communication in NDN
is based on fetching named data, and there is a unique and
secured binding between a name and its content, therefore
NDN Sync protocols can simply focus on the synchronization
of the dataset names. Once all the entities in the same
application obtain an identical set of data names, then they can
individually decide on when to fetch which data published by
others.

2

NDN Sync protocols bridge the gap between NDN network
layer’s datagram Interest-Data exchange primitive and the
application layer’s need for data sharing among multiple
participants, in a way remotely analogous to the role of
TCP which bridges the gap between IP’s datagram service
and applications’ need for reliable delivery in today’s In-
ternet. However, Sync differs from the existing end-to-end
reliable transport protocols, such as TCP, in three fundamental
ways. First, Sync synchronizes application-named datasets
among multiple parties, while a TCP connection delivers byte
streams identified by its two endpoints. Second, nodes running
Sync can fetch data by names from anywhere the matching
data items are found, since the security is attached to the
data instead of data container or communication channel.
Third, Sync does not require all communicating parties to
be interconnected at the same time, while a TCP connection
delivers byte streams between two communicating endpoints
synchronously (i.e. both must be online at the same time).
The ability to reconcile dataset differences asynchronously is
especially useful in constrained environments with sleeping
nodes and intermittent connectivity.

Several Sync protocols have been proposed for the NDN
architecture [11], including ChronoSync [12], iSync [13] and
PSync [14]. In ChronoSync, producers in a Sync group
publish data that are identified by each producer’s name and
a monotonically increasing sequence number.1 The state of
the dataset is concisely represented as a list of key-value
pairs that maps each producer’s name to its latest sequence
number. The ChronoSync protocol disseminates the digest of
this list via multicast so that everyone in the Sync group can
detect any inconsistency of its local state and retrieve newly
produced data accordingly. iSync uses Invertible Bloom Filter
(IBF) [15] to represent a set of arbitrary names by storing the
hash values of the data names in the IBF. Each producer in
iSync periodically advertises the digest of its IBF. Whoever
has a different digest can fetch the IBF from the producer,
extract new hash values using IBF subtraction, and request
the actual data names corresponding to those hashes from the
producer.

PSync has a unique feature of allowing consumers to
synchronize with producers on specific subset of the data
namespace, which is particularly suited for ndnBMS-PS. Sim-
ilar to ChronoSync, PSync assumes data names from each data
stream contain a name prefix and a monotonically increasing
sequence number. Different from ChronoSync, PSync uses
an IBF to encode the set of the latest data name from all
streams, this use of IBF allows PSync to extract differences
between two participants more efficiently than ChronoSync.
The consumers can subscribe to any subset of the data streams
and receive the latest data generated in those streams. Each
consumer maintains both its own list of subscribed data stream
prefixes (called subscription list), which is efficiently encoded

1This does not reduce the generality of the protocol since the applications
can encapsulate the data objects named under different naming conventions
in the sequentially named data packets.

1. Sync Interest: name = /<routable-prefix>/psync/<sub-list>/<old-IBF>

2. Data: name = /<routable-prefix>/psync/<sub-list>/<old-IBF>/<new-IBF>
content = <updated data name>

3. Interest to fetch update:
name = <updated data name>

4. Data: name = <updated data name>
content = <updated data>

…

Consumer Producer

Fig. 1: PSync message exchanges between consumer and pro-
ducer (<sub-list> is the consumer’s subscription list encoded
in Bloom filter, while <old-IBF> and <new-IBF> are the
producer’s previous and current dataset state encoded in IBF)

by a Bloom filter, and the latest IBF it has received from
producers.

Figure 1 illustrates the PSync message exchanges between
a consumer and a producer. The producer encodes the latest
data names from all its data streams in an IBF, which is
updated upon all new data production. When the producer
receives a PSync Interest from a consumer which contains
both the subscription list and the consumer’s IBF, it can filter
out the changes relevant to the consumer, and send back
the corresponding IBF. Because PSync includes consumers’
subscription information and producer’s dataset state explicitly
in the Interest/Data exchange, it minimizes the soft-state
information kept by the producer.

In addition to the pub-sub functionality, PSync can also
be used to support full synchronization among a group of
participants. Therefore, if one sets up multiple data repositories
(repos) to collect sensing data, the repos can run PSyns
to synchronize their dataset, so that consumers can retrieve
updates from any of the repos that host the same sensor
dataset, enabling a multi-repo pub-sub framework in ndnBMS-
PS.

III. SYSTEM DESIGN

ndnBMS-PS is a pub-sub communication framework de-
signed to support data access over NDN in a typical enterprise
BMS. In this section, we present our design assumptions, goals
and detailed design.

A. Design Assumptions and Goals

We make the following design assumptions based on the
BMS data access requirements stated in Section II-A.

First, we assume that the BMS sensors are hardwired to
some smart panel or controller that speaks the NDN protocol
on the enterprise network. The panels gather the readings from
the sensors and package them into NDN Data packets.

Second, since the panels usually have limited storage, they
need to transfer data to a long-term storage device, i.e.,

3

NDN repo [16], for data archiving and access. The repos
are the core components in ndnBMS-PS that coordinate the
communication between sensors and applications. We expect
the repos to run on servers with enough storage to host the
data generated by the sensors they are serving. The repos are
connected to the enterprise network via NDN and stay online
to process pub-sub requests. They typically have no constraint
on computation capability or energy budget.

Third, the consumers in the BMS include data acquisition
applications running on servers, laptops, and smartphones, as
well as controller logics on the smart panels that monitor the
data created by other panels. Mobile consumers on laptops
and smartphones may have intermittent network connectivity
(e.g., when the user closes the laptop or put the smartphone
app into background) and thus do not always stay online. They
may also experience other types of constraints such as low-
power CPU and limited storage.

The ndnBMS-PS design aims to achieve the following
goals:

• Scalability: the framework should support a large number
of sensing data streams and consumers with arbitrary
subscription relations.

• Availability: the framework should provide redundancy
and automatic failover to enable producers publishing
new data and consumers fetching updates as long as a
subset of the pub-sub repos are running.

• Security: the framework should enable authentication for
the communication between producers, consumers, and
pub-sub repos, and support data encryptions as needed
for content confidentiality. 2

B. Design Overview

ndnBMS-PS provides a pub-sub communication framework
on top of our earlier work NDN-BMS [10] to address the
challenges in BMS data consumption. Each sensor’s data
points form a data stream, which is published under an NDN
name prefix by the smart panel connected to the sensor. To
overcome intermittent connectivity and resource (e.g., CPU,
storage, and energy) limitations, sensors publish their data
into a nearby NDN repo for archiving and access. In order
to provide redundancy and efficiency of data retrieval, sensor
data is typically replicated in multiple repos. The repos serv-
ing a particular replicated dataset and consumer applications
interested in that dataset form a pub-sub group. For example,
five buildings may publish their data to three nearby repos; the
repos synchronize their data with each other, so that consumers
can obtain the data for any of the buildings from any repo.

Consumer applications in a pub-sub group may subscribe
to any subset of the BMS data streams that are identified
by the stream name prefixes, and pull updates from one of
the pub-sub repos about the newly published data in their
subscribed data streams. ndnBMS-PS uses PSync protocol
to support the communication between the consumers and

2The ndnBMS-PS framework can make use of name-based access control
as described in [17].

the pub-sub repos. For example, a pub-sub group may gen-
erate data under the prefix /Company/Building1/Electricity,
where each pub-sub repo stores data streams with prefixes
of the form /Company/Building1/Electricity/⟨panel⟩/⟨device⟩
/⟨metric⟩/. Suppose a consumer is interested only in Panel 2’s
data, it can subscribe to that panel’s name prefixes using PSync
so that its pull requests will be answered whenever there are
new data points generated under those name prefixes. Based
on the notification information, the applications can then make
local decisions of whether to retrieve the data, which can be
done through regular NDN Interest-Data exchanges.3

All data packets in ndnBMS-PS are authenticated using a
hierarchical trust model expressed in the NDN names, which
is aligned with real-world physical or logical structures such as
campus buildings and enterprise management (Section III-E).
The sensor data may be encrypted for access control [10], in
which case the data decryption keys (which may be refreshed
periodically) are also distributed to the consumers as data
streams over ndnBMS-PS.

ndnBMS-PS can support complex pub-sub relationship be-
tween many producers and consumers by aggregating the
sensor data and the consumer requests at the pub-sub repos.
As such, the repos are a core component in the ndnBMS-
PS framework. The number of repos in a pub-sub group is
typically determined by the deployment scenario. For example,
a small pub-sub group running inside a single building and
generating a few dozens of data streams may need only two
or three repos to support adequate data replication, while a
large pub-sub group spanning across the whole campus may
need five or more repos to collect BMS data from different
locations and serve many consumer applications.

Figure 2 shows the modules inside a repo. The BMS
panels and aggregators continuously publish streams of sensor
readings which are pulled into remote repos using the data
interface for archiving in the data store. The Replication
interface monitors the addition of new data in the data store
and synchronizes the group dataset with other repos using the
full sync API of PSync. The Pub-sub interface enables the
consumer applications to subscribe to different data streams
using the partial sync API of PSync. Each consumer requests
for data updates based on its own schedule and decides
independently whether to fetch the new data according to the
application semantics. Finally, the data interface handles data
fetching Interests from the applications.

Multiple pub-sub groups can be deployed independently
on the campus network to support different applications and
services either around the same location or across different
buildings, as illustrated in Figure 3. Different pub-sub groups
can also be concatenated together, with the BMS applications
subscribing to and processing the input data in one group and
publishing the output data in another group.

3If the data size is small, the notification message may optionally include
the new data point(s) to avoid extra messages and delay.

4

Fig. 2: System modules inside the repo

Fig. 3: Deployment of three pub-sub groups on an enterprise
campus network that serve different types of BMS data:
electricity, temperature, and water flow

C. Data Publication and Acquisition

The BMS panels in a pub-sub group usually publish data
points that are relevant to a class of data acquisition applica-
tions with similar functionality. The data points are grouped
into streams by their name prefixes (which also serve as stream
identifiers). Figure 4 shows an example of data names in a pub-
sub group with two electrical panels. The group is identified
by the prefix /BigCompany/Building1/Electricity
which indicates this pub-sub group provides power usage
data for Building1 on the campus of BigCompany. Each
panel manages different appliances in the room (e.g., heater,
vent, switches, plugs, projector, speaker, etc.) and continuously
generates voltage and current readings for those appliances.
ndnBMS-PS requires the last component of the data name to
be a unique sequence number that gets incremented by one
for each new data point within a stream.

There can be a number of means to collect BMS data points
into the repos. In ndnBMS-PS, the data producers use the Repo
Insertion Protocol [18] to notify the repos to retrieve the data
when they are generated (shown as step À in Figure 5). Each
panel interacts with only one of the repos in the pub-sub group
during data insertion. To allow automatic failover in the face

/BigCompany/Building1/Electricity

/BigCompany/Building1/Electricity/Panel1/Heater/Voltage/{1,2,3,…}
/BigCompany/Building1/Electricity/Panel1/Heater/Current/{1,2,3,…}
/BigCompany/Building1/Electricity/Panel1/Vent/Voltage/{1,2,3,…}
/BigCompany/Building1/Electricity/Panel1/Vent/Current/{1,2,3,…}
/BigCompany/Building1/Electricity/Panel1/Switches/Voltage/{1,2,3,…}
/BigCompany/Building1/Electricity/Panel1/Switches/Current/{1,2,3,…}
/BigCompany/Building1/Electricity/Panel1/Plugs/Voltage/{1,2,3,…}
/BigCompany/Building1/Electricity/Panel1/Plugs/Current/{1,2,3,…}

/BigCompany/Building1/Electricity/Panel2/Projector/Voltage/{1,2,3,…}
/BigCompany/Building1/Electricity/Panel2/Projector/Current/{1,2,3,…}
/BigCompany/Building1/Electricity/Panel2/Speaker/Voltage/{1,2,3,…}
/BigCompany/Building1/Electricity/Panel2/Speaker/Current/{1,2,3,…}
 …

Data Streams:

Pub-Sub Group Prefix:

Fig. 4: Example of data names in a pub-sub group

Subscription

Filtered Updates

App1

S
ub

sc
rip

tio
n

Fi
lte

re
d

U
pd

at
es

App2

R2

R1

R0

R
e
p

o
 In

s
e
rt C

m
d

D
a
ta

 Tra
n
s
fe

r

Panel1

Data

Data

Data

Data

Repo Insert C
md

Data Transfer

Panel2

re
pl
ic
at
io
n

replication

replication

Data

`
a

a

b

Publish:

/…/Panel1/Heater/Voltage

Subscribe:

/…/Panel1/Heater/Voltage

Fig. 5: Data flow in a pub-sub group

of repo failure, the repos in the same group announce the same
name prefix in order to receive notifications from the panels.
The NDN forwarders in the network will use the Best Route
forwarding strategy [19] to direct each data insertion request
toward the closest repo. The repo receiving the data insertion
request will send an Interest to the data producer to retrieve
the data.

Once the repo retrieves the data point, it will replicate the
data in the background to other repos in the same group
using PSync’s full sync API (shown as step Á in Figure 5).
Rather than synchronizing the sensor data streams directly in
the PSync group, the repo publishes a Data packet under its
own name prefix which “wraps” the sensor data names in
the content, and synchronizes this “repo data” instead. This
additional level of indirection ensures that the size of the
PSync state maintained by every repo is proportional to the
number of repos in the group rather than the number of data
streams. Another important benefit is that when many sensors
generate data points at the same time, the repo can batch
multiple new sensor data names in one repo data packet in
order to improve the efficiency of the sync process. Figure 6
shows an example of the repo data including its name and

5

Name: /BigCompany/Building1/Electricity/Repo/Repo1/<seq#>

Content: {/<Group-Prefix>/Panel1/Heater/Voltage/<seq#>,

 /<Group-Prefix>/Panel1/Heater/Current/<seq#>,

 /<Group-Prefix>/Panel1/Plugs/Voltage/<seq#>,

 /<Group-Prefix>/Panel1/Plugs/Current/<seq#>,

 …

 }

Group Prefix

Fig. 6: Example of repo data published through PSync’s full
sync API for replication among repos

content which contains a snapshot of the latest data names for
all the data streams in the repo.

When other repos receive the notification of the new sensor
data names published by some repo via PSync, they will
send Interests that carry a forwarding hint [20] pointing to
the repo’s unicast name prefix in order to retrieve the sensor
data packets from that repo, to avoid the Interests reaching
the data producer directly. Alternatively, the repo may include
the wire-encoded sensor data packet inside the repo data it
publishes and synchronizes via PSync. This saves the round-
trip for others to retrieve the sensor data packet. After receiving
the new sensor data, all repos insert the data to their local
data store. The PSync partial sync producer running at the
Pub-sub interface listens to the repo insert event and informs
any subscribed consumers with the updated IBF and missing
names.

D. Data Subscription

Data subscription in ndnBMS-PS allows the consumer
applications to receive updates efficiently from a subset of
the data streams published in the pub-sub group. Behind
the scene, the consumers use PSync Interest messages to
retrieve the latest data name of each subscribed stream from
the repos. Once they obtain the new data name with the
latest sequence number, the consumers can decide whether to
fetch the new data according to the application requirements
(which corresponds to step Â in Figure 5). The separation
of the notification of names from the retrieval of actual data
allows ndnBMS-PS to accommodate different data consuming
semantics (e.g., sequential fetching, latest-data first, random
sampling, etc.) without forcing every consumer to receive all
the data.

The subscription state of the consumer consists of two parts:
(a) the list of name prefixes of the subscribed data streams and
(b) the latest state of the whole dataset known by the consumer
(which may not be up to date). In PSync, the subscription list
is encoded as a Bloom Filter (BF) due to its space efficiency.4

The state of the repo is represented using an Invertible Bloom
Filter (IBF) computed over the latest names in the data streams

4There can be other ways to encode the name prefixes, for example, a range
[NP1, NP2] can efficiently represent all the name prefixes between two name
prefixes NP1 and NP2 based on some ordering criteria.

stored at the repo, which is sent back to the consumers in
PSync reply messages (see Figure 1). When a repo receives
new data (either from the BMS panels or from other pub-sub
repos via the PSync replication channel), it replaces the data
name of the updated stream in the IBF with the latest one.

When requesting for updates in the subscribed data streams,
the consumer sends its current state (including the BF-encoded
subscription list and the previously received IBF) in the
request. To generate a PSync reply, the repo subtracts the
received IBF from its own IBF to detect the streams that have
been updated, filters the updated streams with the subscription
list, and returns the latest data names of the subscribed streams
to the consumer. Since the sequence number in the data name
continuously increases, the name of the latest data can serve
as an implicit notification of all the previous data published in
the same stream. The reply carries the repo’s latest IBF, which
is used by the consumer to replace its IBF and “advance” its
data consumption state.

An important design benefit of using PSync in ndnBMS-
PS is that the consumer’s subscription state is maintained by
the consumer itself rather than stored in the pub-sub repos.
This allows the repos to remain stateless about the consumer
subscription information, which reduces the amount of state
that the repos have to maintain. It also enables the consumers
to retrieve updates over the PSync protocol from any of the
repos that are synchronized for the same set of data streams
(using PSync’s full sync API) without worrying about loss
of subscription state or having to wait for the consumer state
synchronization among the repos. Multiple repos in the same
pub-sub group use the same name prefix to receive PSync
Interests, and the network will always forward the consumers’
PSync Interest to the nearest available repo.

E. Data Authentication

In ndnBMS-PS, the public keys of all the entities (panels,
user devices, and repos) are certified using a hierarchical
trust model expressed with the names of the signing keys.
Signatures generated by the trusted entities are verified by
following the certification chain up to a common trust anchor
or, eventually, the BMS root key. The key signing chain for
the panels is aligned with the hierarchical structure of their
physical locations in the enterprise buildings, as is shown
in Figure 7a. The key signing chain for the user devices
is instead aligned with the logical management hierarchy in
the enterprise, which is shown in Figure 7b. The repo uses
a different key for each pub-sub group it participates in,
following the principle of least privilege. The repo key is
signed by the pub-sub group key, which is further signed by the
building key or the BMS root key (see Figure 7c), depending
on whether the pub-sub group is located in a single building
or spans across the campus.

The data publishing process requires the mutual authenti-
cation between the producers and the pub-sub repos: on one
hand, the repos need to authenticate the sensor data before
adding them to the local storage; on the other hand, the produc-
ers need to verify that the confirmation in the Repo Insertion

6

/BigCompany/BMS/key

/BigCompany/Building1/key

/BigCompany/Building1/Electricity/Panel1/key

/BigCompany/Building1/Electricity/Panel1/Heater/Voltage/<seq#>

Signs

Signs

Signs

BMS Root Key:

Building Key:

Device Key:

Device Data:

(a) Sensor certification chain

/BigCompany/BMS/key

/BigCompany/DepartmentA/key

/BigCompany/DepartmentA/Alice/key

/BigCompany/DepartmentA/Alice/Phone/key

Signs

Signs

Signs

BMS Root Key:

Department Key:

Employee Key:

User Device Key:

(b) User device certification chain

/BigCompany/BMS/key

/BigCompany/Building1/key

/BigCompany/Building1/Electricity/key

/BigCompany/Building1/Electricity/Repo/Repo1/key

Signs

Signs

Signs

/BigCompany/Building1/Electricity/Repo/Repo1/<seq#>

BMS Root Key:

Building Key:

Pub-Sub Group Key:

Repo Key:

Repo Data:

Signs

(c) Pub-sub repo certification chain

Fig. 7: BMS certification chain examples

process [18] comes from a legitimate repo in order to make
sure the data is successfully archived in the pub-sub group. The
consumers also need to authenticate the PSync replies from
the repos and the sensor data fetched from the network. In
addition, the repos need to authenticate each other during the
PSync message exchanges. In a traditional TCP/IP-based pub-
sub system, implementing such complicated authentication
steps would require TLS channels between all communicating
parties. In contrast, the data-centric security paradigm and the
expressive naming in NDN enable a more powerful and elegant
solution with a simple, hierarchical trust model that allows
NDN nodes to authenticate any data produced on the network.

IV. EVALUATION IN MINI-NDN
We implemented the proposed system on the NDN plat-

form [7] and evaluated it using our emulation tool Mini-
NDN [21]. Our experiment topology (Figure 8) is based on
the UC Berkeley campus core network [22], which has two
core routers connected to border routers and every edge router
connected to both core routers for robustness. Each edge router
is connected to a number of repos and consumers. The link
speed between routers is 1Gbps and propagation delay is
uniformly distributed between 10 and 30 microseconds. To
emulate unreliable wireless links, we made 20% of the links
between consumers and edge routers lossy with a loss rate of
1% (some experiments have a higher loss rate). Every repo
collects data from a number of producers (BMS panels), each
generating a stream of data with random inter-arrival times

Fig. 8: Emulation evaluation topology for BMS system

between 1 and 5 minutes. Each data consumer subscribes to
a fixed number of randomly chosen set of data streams.

To evaluate how well the system scales with the number of
monitored buildings and end users, our experiments include
varying number of data streams, data consumers and repos.
We focus on the data fetching delay, i.e., the delay from when
a data point is produced to when the data is obtained by a
consumer that has subscribed to the data, which includes up to
four delay components: (a) the delay for the producer to insert
the data into the repo, (b) the delay to propagate the data from
the producer’s repo to the repo with which the consumer is
sync’ed (if the two repos are different), (c) the delay to inform
the consumer of the new data name, and (d) the delay for the
consumer to fetch the data. In the first part, the producers
use the Repo Insertion Protocol that takes 1.5 RTT to insert
a Data packet into a repo, which is typically constant in our
emulation environment. Therefore our experiments measure
only the latter three parts of the delay. Below we present our
experiment results.

A. Number of Data Streams per Repo

In this experiment, we run five repos and vary the number
of data streams per repo from 500 to 1500. We then measure
the data fetching delay across 20 consumers, each subscribing
to 200 data streams, over a 10-minute time period. We present
our results using the Tukey boxplot, i.e., the two ends of the
whiskers represent the lowest data point within 1.5 IQR of the
lower quartile and the highest data point within 1.5 IQR of the
upper quartile, respectively.

We can see in Figure 9 that (1) the lowest data fetching
delays are slightly over 9 ms, which correspond to the cases
where the consumer subscribes to the same repo into which
the producer inserts data; (2) the median delay increases only
from 0.05 second to 0.06 second while the number of streams
grows from 500 to 1500 per repo; and (3) the 75th-percentile
delay is below 0.15 second and the highest whisker endpoint

7

Fig. 9: Data delay vs. number of streams per repo (5 repos,
20 consumers, 1% link loss rate)

Fig. 10: Data delay vs. number of repos (1000 data
streams/repo, 1% link loss rate)

is around 0.32 second for 1400 streams per repo. These results
demonstrate that the system scales very well when the overall
data production rate increases.

B. Number of Repos

We varied the number of repos from 5 to 10 while keeping
the other parameters fixed (e.g., 1000 data streams per repo
and 200 subscriptions per consumer) in the second experiment.
Note that we also maintain a fixed ratio between consumers
and repos here, i.e., 12 consumers/repo. One can observe from
Figure 10 that the data fetching delay remains stable as the
number of repos increases, suggesting that we can scale out
our system to store more data streams and serve consumers
by adding more repos.

C. Number of Consumers

In the third experiment, we varied the number of consumers
from 20 to 120, while maintaining 10 repos and 1000 data
streams per repo. Figure 11 suggests that the data fetching
delay does not increase significantly even though we increase
the number of consumers by a factor of 6. This is due to
two reasons: (1) the consumers interact with the repos using
the PSync protocol, which does not maintain per-consumer

Fig. 11: Data delay vs. number of consumers (10 repos, 1000
data streams/repo, 1% link loss rate)

Fig. 12: Data delay under different loss rates (10 repos, 1000
data streams/repo, 120 consumers)

state and uses IBF to do efficient set difference operations;
and (2) the consumer-repo delay and its variations are much
smaller than those in the repos’ data synchronization process.
In our current prototype, the pub-sub repo is implemented
as a single-thread process that has to process the consumer
requests sequentially. We believe the performance difference
in these experiments can be further improved once we change
the repo’s PSync module to be multi-threaded.

D. Link Loss Rate

In the final experiment, we varied the link loss rate from
2% to 10%, while running 10 repos with 1000 data streams
per repo and 120 consumers. Note that we set 20% of the
consumer links to be lossy. If the requested data is lost, a
consumer retransmits the Interest up to 3 times if it does not
get the data. The results in Figure 12 show that the higher loss
rates did not have much impact on the data fetching delay.
This is because the lost data is already cached at the edge
router and can be easily recovered in the next retry.

V. RELATED WORK

Several frameworks have been proposed so far for
ICN architectures to support end-to-end pub-sub semantics.

8

COPSS [23] achieves pub-sub communication using push-
based multicast mechanism similar to PIM-SM. When pub-
lishing data, the publisher sends a publication message to-
wards some Rendezvous Point (RP). The publication message
contains the Content Descriptor (CD) of the published infor-
mation. The CD is a hierarchical name that allows subscription
at different granularities. COPSS adds the Subscription Table
(ST) to the NDN forwarders to keep track of downstream data
subscribers. The subscriber sends a subscription message to-
wards the RP to establish a forwarding path. Forwarders along
the path will record the subscribed CD and the downstream
interface in the ST using bloom filters. The data from the
publisher is then pushed to all subscribers following ST entries
instead of PIT entries as in normal NDN forwarding.

iHEMS [24] modifies the NDN routers to implement per-
sistent subscription using long-lived forwarding information.
The subscribers send subscription requests that persist in the
router’s PIT for some time t. Any data published during that
time t will be forwarded to the subscribers without consuming
the PIT entry. The authors of iHEMS acknowledge that persis-
tent PIT entry may affect the traffic control and flow balancing,
but argue that the problem can be mitigated by choosing the
persistence interval t very carefully. To support secure group
communication, iHEMS proposes to encrypt confidential data
with a group key shared among the publishers and subscribers.
In addition, iHEMS relies on dedicated directory service to
maintain the list of data names published in the network,
through which the publishers and subscribers discover each
other.

Both COPSS and iHEMS allow more than one data packet
returned for each pending Interest over a single link, es-
sentially breaking the flow balance principle of NDN [25].
Although this approach reduces the number of interests, it is
susceptible to congestion and denial-of-service attacks.

PSIRP/PURSUIT [26] is an ICN architecture that pro-
vides native pub-sub support at the network layer. In
PSIRP/PURSUIT, the data (or information) is identified by
a pair of flat labels: the rendezvous identifier (RID) and the
scope identifier (SID). To publish information, the publisher
needs to choose the scope for the publication and create
the RID for the publication. Then the publication message
containing the RID and the SID is forwarded to the rendezvous
node within the scope of SID, which will store and manage
the RID. A subscriber first learns about the RID and SID,
then issues the subscription request to the rendezvous point
of that RID. A forwarding path is then created between the
publisher and the subscriber (through the rendezvous point)
and future information will be sent over this channel. The
packet forwarding in PSIRP/PURSUIT can be implemented
efficiently using MPLS-style label matching.

ndnBMS-PS differs fundamentally from the above proposals
in the following aspects: (1) it is built on top of NDN’s
Interest-Data exchange semantics and achieves efficient sub-
scription without breaking the flow balance principle by ag-
gregating multiple subscriptions into a single PSync Interest;
(2) it is designed specifically for the BMS environments

and takes into account the practical requirements such as
hierarchical naming and trust management, data archiving and
replication, efficient subscription to multiple data streams, and
accommodation for different data consuming semantics, all of
which are essential to the BMS applications.

HoPP [27] was recently proposed for pub-sub in ICN-
based IoT networks. It uses Content Proxies (CP) to decouple
producers and consumers similar to how Repos are used in
ndnBMS-PS. However, it introduces a Prefix Advertisement
Message to set up FIB entries for the CPs, and a Name
Advertisement Message to propagate data from producers to
the CPs. In contrast, ndnBMS-PS does not rely on intermediate
nodes to process any special messages; the Sync and Repo
protocols run on application nodes (consumers, producers and
repos) using basic interest/data exchanges.

VI. CONCLUSION

In this paper we present ndnBMS-PS, a distributed pub-sub
communication framework for building management systems
over NDN. ndnBMS-PS extends our previous work on secure
data acquisition in NDN-BMS to support data subscriptions
from consumer applications running on different platforms
and with interests in different data as well as different data
consumption semantics. PSync, a new addition to NDN’s data
sync arsenal, enables ndnBMS-PS to replicate collected sensor
data across multiple repos to provide adequate redundancy and
scalable data retrieval, and it allows data consumers to receive
notifications of new sensor readings generated by multiple
BMS panels. Last but not least, all sensor data readings, as
well as all packets generated by the repos, are authenticated
through cryptographic signatures and can be verified through
a hierarchical trust model.5

ndnBMS-PS is a comprehensive pub-sub design based on
NDN’s Interest-Data primitive. It retains the fundamental
design principles of the NDN architecture such as flow bal-
ancing and hierarchical naming. This design exercise further
confirms (a) the expressive power of naming in NDN, such
as embedding the building hierarchy and sensor types in
the prefixes of the pub-sub groups; (b) the usefulness of
naming conventions, such as the use of sequence numbers to
improve the efficiency of data synchronization; (c) the utility
of NDN Sync protocols, which simplifies application design
and supports asynchronous multi-party data sharing; and (d)
the simplicity of data authentication using a hierarchical trust
model based on hierarchical data naming and organizational
and system relationships.

ACKNOWLEDGMENT

This work has been supported by the National Sci-
ence Foundation, under awards CNS-1344495, CNS-1629769,
CNS-1345318, and CNS-1629922.

5Data confidentiality and access control can also be supported using data
encryption, as is described in our previous work [10], or the more recent
Name-based Access Control [28].

9

REFERENCES

[1] W. Shang, Y. Yu, R. Droms, and L. Zhang, “Challenges in IoT
Networking via TCP/IP Architecture,” NDN Project, Tech. Rep. NDN-
0038, February 2016.

[2] W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu, A. Afanasyev, J. Thomp-
son, J. Burke, B. Zhang, and L. Zhang, “Named Data Networking
of Things,” in Proceedings of 1st IEEE International Conference on
Internet-of-Things Design and Implementation (IoTDI), 2016.

[3] Y. Zhang, D. Raychadhuri, L. A. Grieco, E. Baccelli, J. Burke,
R. Ravindran, G. Wang, B. Ahlgren, and O. Schelen, “Requirements
and Challenges for IoT over ICN,” Internet Engineering Task
Force, Internet-Draft draft-zhang-icnrg-icniot-requirements-01, Apr.
2016, work in Progress. [Online]. Available: https://tools.ietf.org/html/
draft-zhang-icnrg-icniot-requirements-01

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking Named Content,” in Proceedings of
the 5th International Conference on Emerging Networking Experiments
and Technologies, 2009.

[5] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 66–73,
Jul. 2014.

[6] A. Afanasyev, T. Refaei, L. Wang, and L. Zhang, “A Brief Introduction
to Named Data Networking,” in IEEE MILCOM 2018.

[7] NDN Project Team, “NDN Codebase Platform,” http://named-data.net/
codebase/platform/.

[8] Y. Yu, A. Afanasyev, D. Clark, kc claffy, V. Jacobson, and L. Zhang,
“Schematizing Trust in Named Data Networking,” in Proceedings of
the 2nd International Conference on Information-Centric Networking,
September 2015.

[9] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang,
“A Case for Stateful Forwarding Plane,” Computer Communications,
vol. 36, no. 7, pp. 779–791, Apr. 2013.

[10] W. Shang, Q. Ding, A. Marianantoni, J. Burke, and L. Zhang, “Securing
Building Management Systems using Named Data Networking,” IEEE
Network, vol. 28, no. 3, pp. 50–56, May 2014.

[11] W. Shang, Y. Yu, L. Wang, A. Afanasyev, and L. Zhang, “A Survey of
Distributed Dataset Synchronization in Named-Data Networking,” NDN
Project, Technical Report NDN-0053, May 2017.

[12] Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized dataset
state synchronization in Named Data Networking,” in 2013 21st IEEE
International Conference on Network Protocols (ICNP), Oct 2013.

[13] W. Fu, H. Ben Abraham, and P. Crowley, “Synchronizing Namespaces
with Invertible Bloom Filters,” in ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems (ANCS), May 2015.

[14] M. Zhang, V. Lehman, and L. Wang, “Scalable Name-based Data
Synchronization for Named Data Networking,” in Proceedings of the
IEEE Conference on Computer Communications (INFOCOM), May
2017.

[15] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s
the Difference?: Efficient Set Reconciliation Without Prior Context,” in
Proceedings of the ACM SIGCOMM 2011 Conference, 2011.

[16] NDN Project Team, “repo-ng: Next generation of NDN repository,”
https://github.com/named-data/repo-ng, 2017.

[17] Z. Zhang, Y. Yu, S. K. Ramani, A. Afanasyev, and L. Zhang, “NAC:
Automating access control via Named Data,” in Proc. of MILCOM, Oct.
2018.

[18] NDN Project Team, “Basic Repo Insertion Protocol,” http://redmine.
named-data.net/projects/repo-ng/wiki/Basic Repo Insertion Protocol,
2014.

[19] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moi-seenko, Y. Yu,
W. Shang, Y. Huang, J. P. Abraham, S. DiBenedetto, C. Fan, C. Pa-
padopoulos, D. Pesavento, G. Grassi, G. Pau, H. Zhang, T. Song,
H. Yuan, H. B. Abraham, P. Crowley, S. O. Amin, V. Lehman, and
L. Wang, “NFD Developer’s Guide,” NDN Project, Tech. Rep. NDN-
0021, Revision 10, July 2018.

[20] A. Afanasyev, C. Yi, L. Wang, B. Zhang, and L. Zhang, “SNAMP:
Secure namespace mapping to scale NDN forwarding,” in Proceedings
of 18th IEEE Global Internet Symposium (GI 2015), April 2015.

[21] NDN Project Team, “Mini-NDN Website,” http://minindn.memphis.edu.
[22] University of California, Berkeley, “Campus network core topology,”

https://nettools.net.berkeley.edu/pubtools/legacy/net/netinfo/newmaps/
campus-topology.pdf, 2016.

[23] J. Chen, M. Arumaithurai, L. Jiao, X. Fu, and K. K. Ramakrishnan,
“COPSS: An Efficient Content Oriented Publish/Subscribe System,” in
Seventh ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), Oct 2011.

[24] J. Zhang, Q. Li, and E. M. Schooler, “iHEMS: An information-centric
approach to secure home energy management,” in 2012 IEEE Third
International Conference on Smart Grid Communications (SmartGrid-
Comm), Nov 2012.

[25] NDN Project Team, “NDN Protocol Design Principles,” http://
named-data.net/project/ndn-design-principles/.

[26] N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos, “Developing in-
formation networking further: From PSIRP to PURSUIT,” in Broadband
Communications, Networks, and Systems. Springer, 2010, pp. 1–13.

[27] C. Gündoğan, P. Kietzmann, T. C. Schmidt, and M. Wählisch, “HoPP:
Robust and Resilient Publish-Subscribe for an Information-Centric In-
ternet of Things,” in Proceedings of the IEEE Conference on Local
Computer Networks (LCN), 2018.

[28] Y. Yu, A. Afanasyev, and L. Zhang, “Name-Based Access Control,”
NDN Project, Tech. Rep. NDN-0034, Revision 2, Jan. 2016.

10

