
Data-Centric Video for Mixed Reality
Peter Gusev, Jeff Thompson, Jeff Burke

UCLA REMAP
Los Angeles, USA

{peter, jefft0, jburke}@remap.ucla.edu

Abstract—Network video streaming abstractions tend to repro-
duce older paradigms of video dating back to analog broadcast.
With IP video distribution becoming increasingly realistic for
a variety of low-latency media applications, this paper looks
ahead to a data-centric architecture for video that can provide
a superset of features from existing abstractions, to support how
video is increasingly being used: for non-linear retrieval, variable
speed and spatially selective playback, machine analysis, and
other new approaches. As a case study, the paper describes the
use of the Named Data Networking (NDN) network architecture
within an experimental theatrical work being developed at
UCLA. The work, a new play, Entropy Bound, uses NDN to enable
a hybrid design paradigm for real-time video that combines
properties of streams, buses, and stores. This approach unifies
real-time live and historical playback, and is used to support
edge-assisted machine learning. The paper introduces the play
and its requirements (as well as the NDN components applied and
developed), discusses key design patterns enabled and explored
and their influence on the application architecture, and describes
what was learned through practical implementation in a real-
world production setting. The paper intends to inform future
experimentation with real-time media over information-centric
networking and elaborate on the benefits and challenges of using
NDN in practice for mixed reality applications today.

Index Terms—NDN, Named Data Networking, ICN, Video

I. INTRODUCTION

While video transport and live streaming over TCP/IP
networks have become more efficient, ubiquitous and interop-
erable, solutions have been built almost entirely on abstractions
based on a 20th-century broadcast video mindset that focuses
on uniform, linear streams transmitted from video sources
to receivers over the network. As the percentage of video
consumed linearly by humans decreases, this broadcast stream
abstraction is less appropriate. For example, in a mixed reality
experience, video segments or other media may be retrieved
dynamically based on activity detected by sensors in the envi-
ronment for non-linear playback to interacting audiences. Or,
they may be used in machine analysis, for example, to detect
and track the motion of objects or people. Various semantic
mismatches between contemporary technology’s abstractions
for moving images and the actual uses of those images creates
overall system inefficiencies (especially for video that must
be secured), limits innovation by making important types of
access and manipulation difficult, and significantly compli-
cates impending transitions to new video formats, including
360-degree, light-field, and volumetric capture. In this paper,
we explore how a data-centric approach to video—in this
case, built on the Named Data Networking (NDN) network

Consumer

Online
Producer

1 2 N

Secure Channel (e.g., via TLS or DTLS)

Control

Video push

Consumer3 4 N

…

Securing data 
at rest requires 
other solution

Each consumer
must re-secure

for storage

5

3

Fig. 1. Typical IP Video abstraction: File or topic granularity request/response;
protocol control of content addressing.

architecture [1]—can support modern uses of video as well as
future media formats.

Applications today store, analyze, and process video in a
variety of ways, ranging from manipulations as simple as
playing in reverse or at multiples of normal speed for human
viewers, to applying machine learning (ML) selectively to
specific areas of many feeds from spatially calibrated cameras.
Despite such diversity, tools for retrieving and manipulating
video across IP networks rely almost entirely on legacy
abstractions, such as those shown in Figure 1. They are
often optimized around linear playback of one stream at
constant speed and uniform size. For applications requiring
more granular access or different types of playback, the only
accessible solutions involve transferring entire videos (or, if
properly encoded, DASH segments [2]) or, for live video,
acquiring and buffering whole frames or groups of pictures
(GOPs), and then manipulating locally. In order to support this,
applications must rely on custom solutions and/or advanced,
less-supported options in contemporary protocols (e.g., Spatial
Relationship Descriptors in DASH [3]). Custom solutions must
also be used for multidimensional random access to video,
such as selectivity in frame space, time, quality, or field of
view (e.g., in 360-degree virtual reality). If one takes security
into account, even fewer off-the-shelf solutions are available.
NDN provides a platform on which to build a data-centric
approach as shown in Figure 2, in which granular, individually
secured objects making up a video stream can be accessed
directly by name as needed by various applications without
relying on a channel-based abstraction and taking advantage
of NDN architectural benefits, including intrinsic multicast and



Consumer

Producer, 
storage, or 

network

3

N

Packet-by-packet Request 

Consumer

2

1

Data secured
at creation

Same packet can fulfill 
multiple requests

Packet-by-packet Response

…

5

…

Intrinsic
peer-to-peer

Non-linear requests
are no different

Fig. 2. NDN (Data-centric) Video abstraction: Packet granularity re-
quest/response; application control of protocol naming.

data-centric security.
The next section briefly introduces NDN and application

research in video streaming, which is generalized to articulate
a data-centric video architecture in Section III. Section IV
describes the experimental mixed reality theater production
Entropy Bound used as a case study, followed by a brief
comparison with a hypothetical TCP/IP-based approach (Sec-
tion V). In the remaining sections, we describe the details of
the NDN-based implementation used to realize the case study,
including new and revised libraries, and conclude with a brief
discussion of what was learned and potential future work.

II. BACKGROUND

A. Named Data Networking

NDN [1] is a proposed network architecture that forwards
data directly based on application-defined names. NDN pro-
vides request-response semantics at the network layer that
are similar to web semantics, but at packet granularity. It
does this without requiring host addressing or name-to-address
mappings, such as those provided by the Domain Name
System (DNS). NDN makes named data the new “thin waist,”
or common interoperability layer. Each data packet is bound to
its name by a cryptographic signature or similar mechanism.
Stateful forwarding is used to route packets through the
network without source and destination addresses [4]. With
NDN, the common stack used by all nodes provides capabil-
ities normally left to middleware or higher-level frameworks,
thus simplifying application design and network management,
and reducing the attack surface. NDN secures data directly
at production, decoupling security from both middleboxes
(e.g., CDNs) and the channels over which data are delivered.
NDN’s network layer forwarding of immutable data, using the
application-assigned names, provides several benefits, a few of
which we highlight here:

a) Intrinsic multicast: NDN is intrinsically multicast,
aggregating duplicate requests at intermediate nodes and an-
swering the same requests with the same data packets (within
the limits supported by network caches), limiting load on the
sources. Intrinsic multicast support enables developers to re-
think traditional channel and file-based video models, and to

embrace modular, distributed architectures without security
compromises.

b) In-network storage: The standard packet format en-
ables any node to store any data and, if desired, respond to
requests for it. This is made possible by data immutability and
data-centric security. While on-path caching has traditionally
been a focus of NDN and information-centric networking
research [5], this is just a subset of a broader range of in-
network storage options enabled by NDN.

c) In-network processing: Similar to in-network storage,
the use of standard packet formats and consistent naming
conventions allows NDN to treat processing as a means to
retrieve dynamically generated data seamlessly. Consumers
use properly constructed names to request results of data
processing, and the network delivers this request to the appro-
priate processing unit (e.g., closer to the data to be processed).

B. Data-centric video

In NDN, names define access to the data. Providing se-
mantically rich naming on the content producer side enables
consumers to access what data they want easily on a per-packet
basis. Early work by our group in live and streaming video [6]
explored benefits to application authors. In that work, we were
particularly interested in the ability to seek randomly to any
frame in an appropriately named stream simply by changing
the name being requested. We also wanted to pursue a unified
approach to playout of live and pre-recorded streams, which
is closely connected to the approach taken here.

The NDN video playout and streaming applications de-
scribed in [6], [7], provided random access to video according
to frame number rather than a chunk of bytes—a departure
from the approach taken in DASH. Providing unambiguously
sequenced naming schemes for multimedia content enables
consumers to start streaming media at any point in time
and/or at a rate slower or faster than the original source,
with the first request packet they issue. This also allows for
seamless switching between historical and live content, on-
the-fly editing and looping/reverse playback capabilities that
are important for video analysis and storage. For example,
for an application that wants random access to video based on
UTC time—say to pull five seconds every Thursday at 17:00—
data objects mapping frame numbers to UTC date/time can be
stored with the video and used as packet redirects for the first
retrieval, adding only one packet of fetching overhead.

C. NDN-RTC: Low-latency data-centric video

For live and playout applications with larger buffer sizes, it
is possible to use HTTP (or QUIC) to approximate this name-
based random access and host-independent behavior at the
application layer if an application can tolerate higher latency
and/or data chunk size. By operating at packet granularity,
the NDN-based approach can support both low-latency ap-
plications as well as latency-tolerant (and disruption-tolerant)
applications more efficiently. Furthermore, it provides a more
effective approach for multiparty and channel-independent
security, as well as disruption tolerance and other benefits



described below. More recently, we have pursued the above
benefits for low-latency (or “soft real-time”) streaming with
subsecond buffer sizes and subframe granularity, not just
playback with long buffer times. This work has resulted in
NDN-RTC, an implementation of video and audio real-time
communication (RTC) over NDN, as described in [7].

Real-time communication of audio, video, and other sig-
nals have been a regular area of study, from early work in
secure voice communication [8]–[10] and instant messaging
[11], which influenced NDN-RTC. The original NDN-RTC
library was designed and developed to support multi-party
audio/video conferencing use cases. The library provides func-
tionality for low-latency streaming of audio and video, loss
resilience through forward error correction, and synchronized
audio/video playback and data verification—enabled by NDN.
It uses the VP9 video encoder for video streaming and
WebRTC’s audio processing pipeline for the out-of-the-box
echo cancellation mechanism. A number of applications were
developed using NDN-RTC, including the GUI multi-party
conferencing tool ndncon [12], headless clients for macOS
and Ubuntu, and their containerized versions for easier and
faster deployment [13].

From the onset of the NDN-RTC project, the library
was designed with the requirement of no direct producer-
consumer communication, enabling the number of consumers
to scale based on network rather than producer capability. Data
consumers request data from the network independently of
whether it must come from a producer, a network cache or
a historical repository. This shifts packet-by-packet decision-
making to the consumer side of the application by making it
responsible for deciding what data to request in order to meet
its needs. Such an architectural paradigm shift, as illustrated in
Figure 2, enables a number of appealing capabilities for real-
time interactive distributed systems. Several—including seam-
less live-historical streaming and granular, source-independent
data access—will be discussed later.

D. Edge-supported augmented reality

While NDN-RTC was originally developed for a new con-
ferencing application, low-latency video streaming has many
uses, which led us to generalize it into a library used in a
variety of ways, including video transport in an edge-supported
augmented reality (AR) application. AR is a prominent ex-
ample of how cameras are used as sensors; video streams
are analysed to generate device odometry and other scene
information whether or not their POV is presented to the end
user. For such applications, we are interested in how a data-
centric approach can be used for the contextual data gathered
by cameras. This is being explored in the ongoing “ICN-
Enabled Secure Edge Networking with Augmented Reality”
(ICE-AR) project [14], which uses decentralized augmented
reality as its driver application.

In ICE-AR, using NDN-RTC, mobile devices continuously
transfer users’ context (POV video and available metadata—
e.g., IMU data) to edge nodes running ML processes in real
time. The raw video is processed to generate a semantic

description of the current environment—the deep context. Dif-
ferent edge nodes provide various subsets of context extraction
services. Deep context is then used by the mobile client to
retrieve relevant content from the cloud content providers and
overlay it on the POV video.

III. DATA-CENTRIC VIDEO ARCHITECTURE

In this section, we describe a generalization of the above
past work into a data-centric architecture for video. This high-
level perspective is important but not sufficient for real-world
systems. Details of supporting research in adaptive rate con-
trol, network-supported congestion control, and generalizing
protocols for real-time data retrieval can be found in [15],
[16], and [17], respectively.

A. Data-centric design patterns
We first identify a series of data-centric design patterns for

application development, which are achieved at upper layers
in, for example, many IP cloud applications, enabled at a lower
layer by NDN, and inspired by our approach with NDN-RTC.
Prior work [18] discusses the following patterns for the use
case of tactical applications and systems—a specific case of
the more general needs of dynamic and mobile environments:
a) create host-independent behavior; b) embrace multicast;
c) enable storage everywhere; d) communicate aggressively
and opportunistically; e) share namespaces, not connections;
f) secure data first. For the purpose of this paper, we focus
on the specifics of host-independent behavior for video, and
occasionally touch on how this is interwoven with the other
patterns described above.

a) Data immutability: In NDN, when a data packet is
published, it is named uniquely, and can not be altered as
it is cryptographically bound to its name. Thus, a requester
can get the data from any node and be sure it is correct. The
implications of immutable data are discussed in [19]. In NDN,
because individual packets are secured (signed and optionally
encrypted) at creation, the immutable data can be distributed
independently of the security of any particular channel.

b) Hierarchical naming: Though NDN data names can
be any string of bits, forwarding is designed to take advantage
of hierarchical structure, just as in IP. The same hierarchy can
be used by the application to convey relationships between
data and by the network for efficient forwarding. Requests
(Interests) can carry incomplete names (prefixes) for data
discovery purposes.

c) Application-level framing: Using the names, data is
broken into Application Data Units (ADUs) that are repre-
sented directly on the network level, subject to the underlying
physical layer packet limits. Application-level framing in the
context of multicast is discussed in [20].

d) Receiver-driven multicast: In NDN, consumers re-
quest the ADUs they need as they need them (at packet granu-
larity), a version of receiver-driven multicast [21]. Requesting
independently verifiable immutable data via receiver-driven
multicast enables requests to be aggregated and responses to
be cached. Multicast behavior is provided implicitly in NDN
through data caching and request aggregation.



e) Simultaneous access: Interest aggregation and data
caching on NDN nodes enable “Reverse CDN” (rCDN) be-
havior [22], where live data leaves the producer once, and
gets multicast to any consumer that requested it.

B. Data-centric video concepts

The above patterns, applied to low-latency video dissemi-
nation, help us articulate several underlying concepts for the
proposed data-centric video architecture.

1) Granular random data access: Real-time video delivery
in distributed applications usually means that data is trans-
ferred between hosts as a stream or a channel; a collection of
node-to-node channels in a chain might be called a pipeline.
Pipelines illuminate a key concern about sender-driven ap-
proaches: They start at the beginning of a chain, and provide
little agency at the receiving end, which is especially important
in scenarios with many heterogeneous receivers reading from
different points in the pipeline. Moreover, pipelines contribute
to limitations and brittleness of applications: 1) both commu-
nicating parties must be present in the network to establish
communication; 2) exceptional situations due to link failures
require re-synchronization between parties for recovery; 3)
data, streamed over the pipeline, is not accessible until it has
reached its destination.

In data-centric design, streaming is achieved by consuming
ADUs at a certain rate. For instance, a video stream over NDN
can be represented as a sequence of uniquely named frames
that can be fetched independently. This shifts the responsibility
of what is fetched onto data consumers. Consumers are
decoupled from data producers, and act independently, without
direct producer-consumer synchronization. Data immutability
and application-level framing allow accessing data randomly
and at application-defined granularity levels. Consumers are
able to fetch only those elements that suit their needs, by
requesting a complete set or a subset of data generated by
the producer. An example NDN naming for packets of typical
video streams in time, space, and quality (for example, as
in enhancement layers of scalable video coding) is shown in
Figure 3. Different applications could use different naming
schemes and/or be standardized within domains.

2) Transparent storage: In data-centric design, it is no
longer important where data is coming from, as long as it
has an expected, verifiable origin, is immutable, and matches
the data request, i.e. is named uniquely. Data producers simply
put data into network-accessible (possibly in-memory) storage
intended to respond to requests and “forget” about it; delivery
is handled upon request, by the network. Consumers send
name requests to the network, receive data back, and are able
to verify its origin. This data may also be fetched, stored and
re-provided by third parties later. Because of NDN data is
immutable, independent persistent storage nodes may fetch
data from the producer and store it as is on the wire—
as named, signed data packets. Storage nodes serve data by
satisfying incoming Interests from the network.

Once the data has been published, the only difference
between stored and live media is that the latter is being

t=0 t=1 t=2

s=0,0

s=1,1s=0,1

s=1,0

q=2

q=1

q=0

Example NDN video packet name format:
/<video-name>/<version>/<time>/<space>/<quality>/<chunk>

/video/v3/1/1,0/0/*

Video stream

Fig. 3. Multidimensional access to video via named data.

produced as requests are in flight. Consumers designed in a
host-independent, data-centric way can use the same retrieval
strategy for recorded and live data, as long as they have a
mechanism to know the name of the most recent data. (One
such mechanism is described in the implementation section.)

Data storage in this architecture is “transparent” in the sense
that individual nodes do not need to a) store produced data
explicitly as long as persistent storage nodes fetch this data,
b) discover and synchronize with producers in order to retrieve
data, or c) access and process stored vs. live data differently.
Transparent storage helps to make data-centric applications
more scalable and disruption tolerant, compared to their host-
centric alternatives.

C. Resulting approach for data-centric video

From the above, we observe that a data-centric video
abstraction has qualities of a message bus, a video stream, and
a key-value store. Video consists of ADUs, like “immutable
grains” of video that, once produced, can be stored and
accessed at any time and order across the full spectrum of
granularity, including in a streaming fashion. Nodes of an in-
teractive system communicate through this hybrid architecture
by requesting data, whether it is live or historical. Production
and consumption operate in an asynchronous, granular, and
distributed fashion, where each node’s function can be scaled
independently and performed on its own timing, as long as the
required data input is available or expected to be generated in
the nearest future. Such a system is data-driven. No tightly
coupled full-frame streaming pipelines need to be established
between communicating parties in order for it to function.
Instead, a receiver-driven approach pulls just the data needed
where it needs to go (processing along the way if necessary);
the availability and specific need for data at each component
drives efficient operation of the system. Data persistency is
enabled by introducing storage nodes that enable ubiquitous
and seamless access to live and historical data.

IV. CASE STUDY: Entropy Bound

Mixed reality integrates digital media and physical space
through a combination of sensors, actuators, and processing



POV 
Camera

Wearable 
controls

Data acquisition

Semantic description
Fast WORM storage

Event detection

Receiver

ML: face 
recognition

ML: object 
recognition

ML: props 
recognition

ML: other

Low latency 
repository:

video, audio, 
data objects

Segment 
labeling

Playback 
event detect

Playback 
processing Projectors

JSON 
annotations JSON 

annotations

triggers

Video, Stills

triggers
Output

frame index 
sync

Fig. 4. Data-centric system architecture for the Entropy Bound case study.

components. Just as in AR, video is used as both content
and context, often with granular access needs. Further, MR
can be supported by offloading computations of media I/O
or user devices for real-time analysis to provide deeper,
device-independent contextual data, what we call deep context.
For example, an MR environment may provide ML-powered
services to describe scenes semantically, observed by the
user’s device. We envision mixed reality as an ecosystem that
includes end user devices, local deep context providers, and
cloud content providers, which offer MR content in exchange
for the user’s context. An MR ecosystem of this kind is a
distributed system with independently operated, horizontally
scalable components, and requires intensive data exchanges
between individual nodes. Data-centric video over NDN offers
unique benefits for such systems. To drive our design of
data-centric solutions for ICE-AR, we have developed proto-
type mobile AR applications that demonstrate context-content
exchange. We have also developed workstation-based MR
applications that explore data-centric video architecture and
use NDN directly over Layer 2, without the power, bandwidth
and computational constraints of mobile devices. We focus on
one such MR application here.

An example that serves as our case study is the experimental
theater piece Entropy Bound, which uses machine learning to
learn from and influence the dialogue and actions of the lead
character through media—progressively, as it is rehearsed and
performed.1 In this work, a fictional brain implant is realized
through machine learning components that analyze, store,

1This experimental comedy follows a highly determined, at times obsessive-
compulsive urban professional who has suffered a traumatic brain injury, and
is now living life with a first-generation digital brain implant. [23]

and recall video from a wireless point-of-view camera worn
by the lead character, augmenting performance space with
projections seen by the audience in real time. This application
has much in common with our vision for augmented reality: A
wearable device offers real-time video to edge nodes for ML
processing, storage and recall. To fulfill its role in the story,
the implemented system has to simulate machine intelligence,
be responsive to the input, and maintain memory of past
interactions. We enumerate these in more technical terms as
follows:

a) Modular machine learning components: A number
of machine learning algorithms (e.g., object recognition and
scene segmentation) must be run in parallel to generate de-
scriptive and structural metadata for the POV camera feed from
the lead performer. The resulting metadata must be stored and
accessed by other nodes of the system. Figure 4 shows high-
level architecture of the Entropy Bound system designed for
NDN. As input data is acquired from the sensors (POV camera
and wearable controls), it is published over NDN. A Receiver
node packetizes data according to the application logic and
assigns each packet a unique name. This data is placed into
in-memory cache of the producer and made immediately
available over the network. It is fetched asynchronously by
a multitude of nodes for ML processing, storage, analysis and
decision-making.

b) Historical video as a first-class entity: One of the
premises of the show is that the fictional “implant” is assisting
its user to remember things, and triggers memories that are
deemed relevant to the present moment. Thus, the system
must be capable of storing sensor data (including video and
generated data) and making it accessible for later recall during



Fig. 5. Photo from the UCLA workshop of the new play Entropy Bound by
Jeff Burke and Jared J. Stein.

the show run or rehearsal. Since any memory can be evoked at
any moment, the data must be available for recall immediately
after storage. The Fast WORM (Write Once Ready Many)
storage is central to the system.

c) Soft real-time responsiveness: Responsiveness is cru-
cial to presenting the show’s ideas to the audience in an
efficient and playful way. This creates real-time processing
requirements for the system. The main logic of the show
is realized through the Segment labeling and Playback event
detect modules which operate on real-time data and produce
decision-making data on-the-fly for the Playback processing
node, responsible for mixed reality projections into the stage
space for the audience. For this case study, we focus on
detecting scene boundaries of the POV video based on gener-
ated semantic annotations, and retrieving semantically similar
scenes (“memories” of the fictional implant) from the storage
for playback.

d) Prototyping and designer-friendly approach: The real
code has to be running and evolving alongside the rehearsals
and, eventually, production runtime. This requires support
for fast prototyping and “experiment-friendly” plug-and-play
system architecture. This leads to a system concept for the
show that focuses on a data-centric multi-node design, which
can be extended and modified quickly with new nodes. We
also had an explicit goal to develop tools and approaches that
aid iteration. Both are described in more detail later.

V. COMPARISON WITH TCP/IP

For comparison, we briefly present a hypothetical design for
how we would have approached this case study over IP.

In a hypothetical high-level design for the system over
IP, we assume using NDI [24] for streaming video over the
network and a key-value store (such as RocksDB) for storage.
NDI provides low-latency, multicast streaming of HD quality
video. From the Capture node, video is multicasted to multiple
nodes that carry Record, Process and Action functions. The
Record node stores video in the KV Storage. A key naming
scheme must be designed for the KV Storage to address

Capture
(NDI 

mcast)

Logic

Action 
(Output)

put (raw image)

stream (video)
put (analysis data)

query analysis data

stream (analysis data) signal (ID-ts intervals)

STORAGE MACHINE

Record
KV Store
[ID-ts : Blob]
[ID-ts : Blob]

…

Historical 
Access 
(NDI)

get (raw image)

stream (video)

stream (video)

signal

ProcessProcessProcessstream (video)

Fig. 6. Hypothetical high-level system architecture for Entropy Bound using
a IP-based approach.

video frames uniquely based on timestamps, streams, and
independent show runs, as well as to cross-reference metadata
with the image data it relates to. For example, one possible
key naming scheme could look like the following:

• < run id >:< timestamp >: video → [image]
• < run id >:< timestamp >: ml :< ml id >→ [data]
• < run id >:< timestamp >: decision :< idx >→ [data]

This way, by knowing the key prefix formed by show run
number run id, and video frame timestamp timestamp, one
can retrieve image data and all accompanying metadata for
this frame.

Processing nodes (which can be added and removed at
runtime) put analysis data into the KV Storage. It is also
streamed (via some UDP messaging mechanism) to the Logic
node that makes show decisions. The Logic node performs
queries on the Storage for the previously recorded historical
data. The decisions made are then signaled to the Action node
as a list of important intervals of relevant historical data.
Finally, the Historical Access node, after receiving signals
from the Action node, performs fetching of historical raw
image data from the Storage, and sets up temporary NDI
streams for consumption by the Action node.

This design illustrates challenging choices one has to make
while designing such a system for IP. Fundamentally, there
must be a hard-coded or software-brokered mapping rela-
tionship between IP addresses of nodes performing various
processing, storage, and I/O functions. This is not trivial for
networks in which those components are often added/removed
regularly, and becomes even more challenging in other scenar-
ios with mobile devices. Additionally, video storage becomes
a system’s bottleneck and introduces a number of problems.
Since encoded NDI stream elements are not immutable and
secured, unifying live and pre-recorded streams presents chal-
lenges. In practice, to be “re-streamed” at a later time, they
have to be decoded, and raw image data must be stored,
then resent upon request, which poses scalability challenges
and adds delay. To minimize read-write access latency, the
Record and Historical Access nodes must be deployed close
to the actual KV-Store. Finally, even though, to the application,
repeated historical playback may seem like the same bits



of data are accessed, this assumption does not hold for the
underlying network infrastructure. The protocol is conceived
of as creating a channel, rather than delivering individually
usable elements of video. In practice, originally encoded live
data, decoded for storage, has to be encoded and streamed
again for historical access. On the network, these streams are
represented as newly generated data packets, unrelated to the
stored or live data, which results in excessive bandwidth usage
and redundant computations for the system.

While we assume that video streams (both live and histori-
cal) can be discovered and accessed by multiple nodes through,
for example, mDNS and UDP multicast, there is still the issue
of synchronization and signaling support between system com-
ponents that needs to be addressed. For brevity, we have not
discussed signaling and synchronization of processing here,
but these tend to require additional protocols and middleware
components in comparison with the approach we take with
NDN in Section VI-A1. In the IP approach, the need to manage
hosts and channels creates a semantic disconnect between
the network abstraction and the application architecture. We
believe a data-centric paradigm for video can close this gap
and increase scalability, robustness, and simplicity of deployed
mixed reality and other video-heavy systems.

VI. IMPLEMENTATION

The data-centric video system built for Entropy Bound
starts with existing NDN tools and libraries, namely: a) NDN
Forwarding Daemon (NFD) for enabling NDN connectivity;
b) NDN Common Client Libraries (NDN-CCL) for Interest-
Data exchange; and c) NDN-RTC library for low-latency video
dissemination, described in Section II-C.2

A. The application’s named data

1) Messaging and general data exchange: For messaging
and general exchange of non-video objects, we standardized
a format for publishing objects of arbitrary type and size
that can be efficiently verified. These enable a “learn first–
fetch later” approach: Data structure can be learned without
fetching the full object, as required by the data-centric video
architecture principle of granular random data access. The
resulting “Generalized Object” (GObj) and “Generalized Ob-
ject Stream” (GObjStream) name schema (see Figure 7) were
implemented in NDN-CNL, described below, and used in the
case study for exchanging various data between participating
nodes—from frame-level annotations, represented as JSON
dictionaries, to still images and text data captured from system
console outputs. Finally, the manifest packet is used to
verify unsigned data segments efficiently. The GObjStream ab-
straction provides a convenient API for publishing continuous
streams of GObj, which complies with the Real-time Data
Retrieval (RDR) protocol [17].

2) Data-centric video format: The above design efforts
in namespace generalizations presented an opportunity to
redesign the original NDN-RTC namespace. A new namespace

2See named-data.net/codebase/platform/ for code and details.

NDN Data Packets

Payload

<seq #>

_meta _manifest %00%00 %00%01 ... %00%NN

<stream_prefix>

_latest

Content-Type

Timestamp

Has-Segments

Other

seg0 digest

seg1 digest

...

segNN digest

0 1 ... N

<version #>

<stream_prefix>/<seq#>

Fig. 7. Generalized Object Stream Namespace

(see Figure 8) provides better support for granular random
access and interoperability between heterogeneous consumers.
As shown, frame objects conform to the generalized object
namespace by providing meta, manifest and data segment
packets. FEC data is preserved by using a dedicated parity
name component. Frames are numbered sequentially, and
latest component provides a pointer to the latest published

frame for consumer bootstrapping using RDR protocol.
Generalizing the namespace allows reuse of code that al-

ready implements formats and fetching patterns like GObj
and GObjStream to fetch NDN-RTC data. Compliance with
these namespaces will enable data consumption by general-
ized consumers such as repos or inspection tools, with no
further changes in the format or the tool. The new namespace
also separates payload data and metadata by publishing it
under different names,3 allowing consumers to “learn first–
fetch later.” Additional data (like gop or parity) is used
by specialized NDN-RTC consumers, or can be optionally
fetched by general clients at will. By providing semantically
expressive, granular and standardized naming for the data, the
data-centric approach enables a high level of flexibility and
interoperability.

B. Meeting application requirements

Building on top of NDN-RTC enabled us to start with a
data-centric video approach that met the requirement of real-
time responsiveness. Below, we discuss how we provided a
designer-friendly approach, unified historical and live stream-
ing, and synchronized edge-based machine learning.

1) Designer-friendly approach with NDN-CNL and Touch-
NDN: As part of the ICE-AR project, we aim to develop
APIs with higher-level abstractions than packet-level request-
response, to encourage data-centric design, which we tested
in this case study. The NDN Common Name Library (NDN-
CNL) offers a new API that is discussed in more detail
in [25]. It aims to provide applications with an interface that
emphasizes the importance of data naming, and offers a thin
layer of abstraction that reduces or eliminates the need to write
code for common packet level behaviors.

NDN-CNL is built around the central abstraction of a
Namespace, which represents one or more data packets pub-

3For previous versions of NDN-RTC, metadata was embedded with the
encoded frame payload.



NDN Data Packets

/<base-prefix>

<timestamp>

<stream-name>

<seq #> _gop

_latest _live

_meta<segment #> _manifest _meta

_parity

frame payload manifest payload

Content-Type:'ndnrtc/frame'

Timestamp

Has-Segments

Other

gop pos, gop #

capture timestamp

frame type

complete frame

parity size

generation delay

<segment #>

FEC payload

<seq #>

start end

/<stream-prefix>/<seq#> /<stream-prefix>/<seq#>

<version #>

0

1

/<stream-prefix>/<seq#>

/<stream-prefix>/_gop/<seq#>

<version #>

timestamp

publish rate

Content-Type:'ndnrtc/stream'

Timestamp

Has-Segments

Other

WxH

bitrate

description

Fig. 8. NDN-RTC namespace

Fig. 9. TouchDesigner integration for NDN.

lished under an arbitrary hierarchical name. The actual logic
of how data is published or fetched is separated into classes
built on a NamespaceHandler base class. Applications act
on and receive events associated with a hierarchical names-
pace through processing handlers that are associated with
specific name prefixes and implement common functions. Each
namespace node is controlled by the same state machine
that includes hooks for data serialization/deserialization, sign-
ing/verification, encryption/decryption, and so on. This allows
client code to work with data-centric video and messages in a
way more aligned with the application logic, rather than at the
level of request-response packets, without loss of benefit. For
example, a SegmentedContent handler allows serializing and
packetizing large objects into smaller, named segments. On the
consumer side, the resulting de-packetized, deserialized object
is asynchronously delivered to the client code.

While the NDN-CNL provides a high-level programming
abstraction, it does not provide any tools for dealing visually
with video streams and other data. This limits both the user
base and the speed of prototyping. We integrated NDN support

(via the CCL and CNL) into Derivative’s TouchDesigner, a
powerful real-time media processing environment, through
a set of Python modules and C++ plug-ins that we call
the “TouchNDN” framework. (See Figure 9.) The ability to
program and experiment with this framework interactively
while simultaneously building the actual system introduced
“data-centric” networking design principles to the develop-
ers, previously unfamiliar with the concept, and shortened
the overall development cycles. TouchDesigner enables rapid
prototyping through its visual programming approach, where
each data processing node can be inspected and adjusted in
place to achieve the desired output. The environment employs
a data-centric paradigm for processing: Each node operates
on data and produces some output that can be fed to another
node. Nodes, or operators, are named and can be nested, which
results in hierarchical naming. We believe that integrating with
TouchDesigner can allow us to stimulate wider and faster
adoption of a data-centric networking approach.

2) Unified historical and live streaming: Through NDN’s
use of in-network storage for any data object, discussed in
the data-centric video architecture principle of transparent
storage, we aimed to unify the approach and interface for
accessing live and recorded data. In NDN’s receiver-driven
model, the only difference between live and recorded data
is that for the former, an application issues Interests before
the data may be available, so it has to know the names to
use. A combination of application-level framing—in which
applications, rather than the network decide how to packetize
their data—and application-defined, network-forwarded data
naming in NDN allows storage to be implemented consistently
on any network-attached node. By simply storing secured,
application-generated packets, nodes respond to Interests for
that data when appropriate. For the Entropy Bound system,
fast-repo [26], a persistent data storage, was implemented us-
ing RocksDB [27] as a back-end key-value store. It allows for



efficient, simultaneous storage and retrieval. The application
was updated with unified mechanisms for streaming live and
historical data from this repo, as well as granular access—
fetching individual frames by name. Once the NDN name
for a stream or a frame is obtained, the following video can
be streamed and played back using internal, or user-defined,
external timing. This allows for straightforward, data-centric
access to the historical and live data, and was used by a
multitude of nodes across the system.

3) Synchronizing video processing: Incorporating and up-
dating ML modules was straightforward: Nodes are configured
with the name prefixes of video to process at runtime. We
leverage the presence of an explicit frame index name compo-
nent for video synchronization between independent nodes in
the case study system. For real-time semantic video annota-
tions, ML processing nodes generate per-frame metadata that
is published under a name derived from the video frame name.
For example, for a video frame named:

/ < run id > / < input id > / < frame idx >

all recognized objects will be published under:
/ < run id > / < input id > / < frame idx > /objects

This way, nodes that are interested in semantic analysis may
fetch the latest annotations without fetching the actual video,
or fetch frames selectively, based on received annotation. By
making frame idx predictable, i.e. sequentially increasing,
multiple nodes can synchronize on the latest available data by
sending requests for future video frames.

C. System deployment

Our initial implementation focused on a local area network
scenario, though many elements could use cloud or MEC
configurations (See Figure 10 for a system diagram).

POV video from the wearable camera is delivered wirelessly
to the Capture machine, where it is compressed and published
using NDN-RTC. This video is simultaneously consumed
over NDN by multiple machines for storage, ML processing,
system control and monitoring. The Edge node runs three
containerized ML processes for faces, objects, and show props
recognition. Resulting per-frame annotations are published
as JSON dictionaries using GObjStream over NDN. The
annotations stream is fetched for detecting scene changes
(segmenting) that are stored in a local DB, which is also
continuously queried for the top N scenes, most similar to
the currently observed frame. This data, published over NDN,
was then used by a number of control and monitoring nodes
to query the Repo for retrieving and displaying actual frames,
corresponding to the query results.

The system described was deployed and experimented with
during the Entropy Bound workshop in December 2018, where
it was co-developed alongside the performance and in use
regularly during rehearsals. All the nodes were connected to
the same LAN segment, and used NDN directly over the
Layer 2 network (Ethernet). To minimize manual network
configuration, multicast faces were used. Therefore, each node
was receiving every other node’s requests and responses.

VII. DISCUSSION

A. Hybrid abstraction: Bus, stream, store

Based on our comparison with the hypothetical TCP/IP
approach and our experience with the case study, the applica-
tion was simplified considerably by using a data-centric video
architecture compared to the host-centric alternative. Granular
random data access and persistency, assumed early in the
process, allowed us to focus design efforts directly on the
application functionality. System deployment was simplified,
as the network itself provided the functions of a message
bus and historical data access. Finally, data-centricity allowed
for unified data access mechanisms. Code that was designed
for live streaming of named data was generalized to access
historical data with minimal effort.

Different parts of the system treated video as a message
bus, decomposable streams, and a store. We leveraged NDN’s
intrinsic multicast to enable many consumers of various live
video streams, with only a single copy of each moving over the
network. This allowed us to think of each stream as a “video
bus” that could be tapped by many nodes. At the same time,
by updating our codebase to use the same namespaces and
network objects for both live and historical playback, we could
also tap the bus at different points “in time.” Together, these
approaches allowed the team to view the video as both a bus
and a store at the same time, a very effective hybrid approach.
NDN enabled our implementation to be easily expanded with
ML processing modules as needed. This effectively enabled
edge processing for the real-time data where processing results
become immediately and implicitly available over the message
bus for other modules’ consumption.

B. Naming challenges

Like recent work in mobile health using NDN [28], more
sophisticated applications generate more complex namespaces
and raise new challenges in managing them. Some specific
challenges clarified through the case study include:

a) Developer scaffolding for complex namespaces: Our
original namespace design was quite complex as it tried to
support many data retrieval patterns. Two practical challenges
forced us to simplify the namespaces for the Entropy Bound
workshop. First, describing even a hard-coded namespace and
associated conventions across the code of multiple distributed
processes requires some combination of tedious manual coding
or asynchronous communication of name hierarchies across
various modules with intermittent connectivity. We are explor-
ing how to address the first challenge via a protobuf-style
language. For more dynamic communication of names, we
plan to use namespace synchronization, which is described
in the next section as future work. The second challenge is
that many dynamic components required shared state across
multiple application instances; for this, we plan to add a pub-
sub style message bus for this in the next iteration.

b) Instance naming: Due to data immutability, producers
must create their data with a name that is unique not only
while they are running, but for its expected lifetime on the



LAN - Ethernet

CAPTURE

NFD

PROJECT1

EDGE

NFD

ndnrtc 
consumer

openface

yolo1 ann publisher

yolo2

seglab

playdetect

edge-status
REPO

NFD

SDI VIDEO

PROJECT2

10K PROJECTOR
4K PROJECTOR 4K PROJECTOR

MONITOR

NFD

CEILING PROJECTOR

INFO/
AUDIO VIZ: TRACE

NFD

MASTER

NFD

[touchOut] repo previews

[OSC] ML labels, seglab info 

[NDI] trace, feed

[NDN-L2] ndnrtc stream
IP-LAN
IP-WiFi 

Fig. 10. Entropy Bound deployment diagram: Ubuntu-based processing and storage machines: Edge, Repo; macOS-based, TouchDesigner machines: Capture,
Master, Viz:Trace, Monitor; supporting and projection machines: Info/Audio, Project1, Project2.

network and in persistent storage. Our approach used unique
application instance identifiers to differentiate data produced
between sessions. For example, in NDN-RTC, this is handled
by inserting a < timestamp > component into the name:
/ < base > / < timestamp > / < stream > / < seq >

This way, the producer always names data uniquely, indepen-
dent of sequence numbers used. Instance naming, however,
presents new challenges for discovering live and historical
data. Initially, it can be solved by enabling the producer to
answer special “rendezvous Interests” with a full name for the
data. Eventually, we plan to address this challenge using name
synchronization, where multiple parties can send namespaces
up to a specific level in the name hierarchy.

VIII. CONCLUSION

The data-centric video architecture explored here emerged
from our goals of exploring unique approaches, benefits, and
challenges of using NDN for video in support of augmented
reality, and using the resulting toolset to support other ongoing
projects, such as Entropy Bound. With this approach, we aimed
to motivate the design from an emerging area (edge-supported
AR) while also applying it in applications that we are already
building. Through the latter, as described in the previous
sections, we have identified some potential new abstractions
and ways of thinking, and identified limitations in available
tooling that we plan to address in the future. In addition
to addressing specific challenges identified in the previous
section, other future work includes:

a) Multidimensional random access: Our initial imple-
mentation supports granular access in time, but as shown in
Figure 3, there is a conceptually straightforward extension

to providing access to spatial regions and enhancement lay-
ers by name. In bandwidth-intensive 3D data sets or very
high-resolution video, spatial selectivity appears to be an
increasingly important capability. Of course, if the media is
encoded semantically, using a scene graph or object-oriented
description [29], names could potentially be used to make
efficient decisions about retrieval prioritization according to
evolving scene semantics.

b) Resource discovery: For both semantically organized
media in the future and current video formats, we have not
addressed how resources are discovered and name schema
determined. Name discovery through application-level name
synchronization, manifests, name enumeration protocols, and
other techniques, as well as name lookup and indirection
services are all active areas of NDN research. For a first step
in this direction, we plan to integrate depth-limited namespace
synchronization [30] to enable consumers to retrieve the name
structure for a given prefix to sufficient depth, to determine
what data is available for fetching. They may individually
proceed to fetch the actual data, as needed.

c) Security: The case study integrated only basic cryp-
tographic signing and verification operations. However, our
design is compatible with data-centric security approaches
(e.g., schematized trust, name-based acces control, and other
approaches [31]–[33]) while preserving granular access to
media and other features.

Even considering these three areas of future work—
increased consumer-side control over what media elements
are needed on a packet-by-packet basis; how to use names
to find the data needed; and data-centric security that pre-
serves granular content access—we believe that a data-centric
approach to networked video offers a powerful replacement



for existing abstractions that is better suited to mixed and
augmented reality applications and emerging media formats.

ACKNOWLEDGEMENTS

We are grateful for the support of the NDN project team,
including Lixia Zhang and UCLA IRL. The initial develop-
ment of Entropy Bound was supported by a Google Focused
Award and the workshop held at the UCLA Department of
Theater; we thank all of the cast, crew, and production staff
involved. Portions of this work were supported by NSF Award
Nos. CNS-1719403 and CNS-1629922, the Intel ICN-WEN
program, and Cisco.

REFERENCES

[1] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
ACM Computer Communication Review, July 2014.

[2] I. Sodagar, “The mpeg-dash standard for multimedia streaming over the
internet,” IEEE MultiMedia, vol. 18, no. 4, pp. 62–67, 2011.

[3] O. A. Niamut, E. Thomas, L. D’Acunto, C. Concolato, F. Denoual,
and S. Y. Lim, “Mpeg dash srd: spatial relationship description,” in
Proceedings of the 7th International Conference on Multimedia Systems.
ACM, 2016, p. 5.

[4] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang,
“A case for stateful forwarding plane,” Computer Communications: ICN
Special Issue, vol. 36, no. 7, pp. 779–791, April 2013.

[5] M. Zhang, H. Luo, and H. Zhang, “A survey of caching mechanisms
in information-centric networking,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 3, pp. 1473–1499, 2015.

[6] D. Kulinski, J. Burke, and L. Zhang, “Video streaming over named data
networking,” IEEE COMSOC MMTC E-Letter, vol. 8, no. 4, pp. 6–10,
2013.

[7] P. Gusev and J. Burke, “Ndn-rtc: Real-time videoconferencing over
named data networking,” in Proceedings of the 2nd ACM Conference
on Information-Centric Networking. ACM, 2015, pp. 117–126.

[8] V. Jacobson, D. K. Smetters, N. H. Briggs, M. F. Plass, P. Stewart,
J. D. Thornton, and R. L. Braynard, “Voccn: voice-over content-centric
networks,” in Proceedings of the 2009 workshop on Re-architecting the
internet. ACM, 2009, pp. 1–6.

[9] Z. Zhu, S. Wang, X. Yang, V. Jacobson, and L. Zhang, “Act: audio
conference tool over named data networking,” in Proceedings of the
ACM SIGCOMM workshop on Information-centric networking. ACM,
2011, pp. 68–73.

[10] Z. Zhu, J. Burke, L. Zhang, P. Gasti, Y. Lu, and V. Jacobson, “A new
approach to securing audio conference tools,” in Proceedings of the 7th
Asian Internet Engineering Conference, ser. AINTEC’11, 2011.

[11] Z. Zhu, A. Afanasyev, Y. Yu, and L. Zhang, “Chronochat: a server-
less multi-user instant message application over ndn (poster),” in NDN
Community Meeting, Los Angeles, CA, September 2014.

[12] “https://github.com/remap/ndncon.”
[13] “https://github.com/remap/ndnrtc.”
[14] J. Burke, “Browsing an Augmented Reality with Named Data Network-

ing,” in 2017 26th International Conference on Computer Communica-
tion and Networks (ICCCN), July 2017.

[15] P. Gusev, Z. Wang, J. Burke, L. Zhang, E. Muramoto, R. Ohnishi,
and T. Yoneda, “Real-time streaming data delivery over Named Data
Networking,” IEICE Transactions, May 2016.

[16] K. Schneider, C. Yi, B. Zhang, and L. Zhang, “A practical congestion
control scheme for Named Data Networking,” in Proc. of ACM ICN,
2016.

[17] S. Mastorakis, P. Gusev, A. Afanasyev, and L. Zhang, “Real-time data
retrieval in named data networking,” in 2018 1st IEEE International
Conference on Hot Information-Centric Networking (HotICN). IEEE,
2018, pp. 61–66.

[18] J. Burke, A. Afanasyev, T. Refaei, and L. Zhang, “Ndn impact on
tactical application development,” in MILCOM 2018-2018 IEEE Military
Communications Conference (MILCOM). IEEE, 2018, pp. 640–646.

[19] P. Helland, “Immutability changes everything.” ACM Queue, vol. 13,
no. 9, p. 40, 2015.

[20] S. Floyd, V. Jacobson, S. McCanne, C.-G. Liu, and L. Zhang, “A reliable
multicast framework for light-weight sessions and application level
framing,” ACM SIGCOMM Computer Communication Review, vol. 25,
no. 4, pp. 342–356, 1995.

[21] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven layered
multicast,” ACM SIGCOMM Computer Communication Review, vol. 26,
no. 4, pp. 117–130, 1996.

[22] H. Moustafa, E. M. Schooler, and J. McCarthy, “Reverse cdn in fog
computing: The lifecycle of video data in connected and autonomous
vehicles,” in 2017 IEEE Fog World Congress (FWC). IEEE, 2017, pp.
1–5.

[23] J. Burke and J. J. Stein, “Live performance and post-cinematic film-
making,” in Co-Presence with the Camera special issue of Performance
Matters, L. Hunter, Ed., 2020.

[24] “https://www.newtek.com.”
[25] J. Thompson, P. Gusev, and J. Burke, “Ndn-cnl: A hierarchical names-

pace api for named data networking,” in (in submission).
[26] “https://github.com/remap/fast-repo.”
[27] “http://rocksdb.org/.”
[28] H. Zhang, Z. Wang, C. Scherb, C. Marxer, J. Burke, L. Zhang, and

C. Tschudin, “Sharing mhealth data via named data networking,” in
Proc. of ACM ICN, 2016.

[29] D. Williams, J. Wyver, and M. Glancy, “Evaluating the potential benefits
of object¬-based broadcasting,” Retrieved December, vol. 5, p. 2017,
2016.

[30] T. Li, W. Shang, A. Afanasyev, L. Wang, and L. Zhang, “A brief intro-
duction to ndn dataset synchronization (ndn sync),” in MILCOM 2018-
2018 IEEE Military Communications Conference (MILCOM). IEEE,
2018, pp. 612–618.

[31] Y. Yu, A. Afanasyev, D. Clark, kc claffy, V. Jacobson, and L. Zhang,
“Schematizing and automating trust in Named Data Networking,” in
2nd ACM Conference on Information-Centric Networking (accepted),
September 2015.

[32] C. A. Lee, Z. Zhang, Y. Tu, A. Afanasyev, and L. Zhang, “Supporting
virtual organizations using attribute-based encryption in named data net-
working,” in 2018 IEEE 4th International Conference on Collaboration
and Internet Computing (CIC). IEEE, 2018, pp. 188–196.

[33] Y. Yu, A. Afanasyev, J. Seedorf, Z. Zhang, and L. Zhang, “NDN
DeLorean: An authentication system for data archives in Named Data
Networking,” in Proc. of ACM ICN, 2017.


